下列五個命題:

①方程y=kx+2可表示經(jīng)過點(0,2)的所有直線;

②經(jīng)過點(x0, y0)且與直線:Ax+By+C=0(AB0)垂直的直線方程為: B(x-x0)-A(y-y0)=0; 

③經(jīng)過點(x0, y0)且與直線:Ax+By+C=0(AB0)平行的直線方程為: A(x-x0)+B(y-y0)=0;

④存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點;

⑤存在無窮多直線只經(jīng)過一個整點.

其中真命題是_____________(把你認為正確的命題序號都填上)

 

【答案】

②③④⑤

【解析】

試題分析:①方程y=kx+2可表示經(jīng)過點(0,2)的所有直線;不正確,不包括y軸。

根據(jù)兩直線垂直的條件知,②經(jīng)過點(x0, y0)且與直線:Ax+By+C=0(AB0)垂直的直線方程為: B(x-x0)-A(y-y0)=0;正確。

根據(jù)兩直線平行的條件知,③經(jīng)過點(x0, y0)且與直線:Ax+By+C=0(AB0)平行的直線方程為: A(x-x0)+B(y-y0)=0;正確。

④存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點;正確,如

⑤存在無窮多直線只經(jīng)過一個整點.正確,如直線……只經(jīng)過整點(0,0).

故答案為②③④⑤。

考點:本題主要考查直線方程的各種形式。

點評:中檔題,本題全面考查直線方程的各種形式。說明命題正確,應(yīng)有結(jié)論支持或能推證,說明命題不正確,舉一反例即可。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①凈A,B,C三種個體按3:1:2的比例分層抽樣調(diào)查,如果抽取的A個體為9個,則樣本容易為30;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;
④已知具有線性相關(guān)關(guān)系的兩個變量滿足的回歸直線方程為y=1-2x.則x每增加1個單位,y平均減少2個單位;
⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在[114.5,124.5)內(nèi)的頻率為0.4
其中真命題為( 。
A、①②④B、②④⑤C、②③④D、③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高三上學期第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題

給出下列五個命題:

①將三種個體按的比例分層抽樣調(diào)查,如果抽取的個體為9個,則樣本容量為30;

②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;

③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,那么這兩組數(shù)據(jù)中比較穩(wěn)定的是甲;

④已知具有相關(guān)關(guān)系的兩個變量滿足的回歸直線方程為,則每增加1個單位,平均減少2個單位;

⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.

其中真命題為(     )

A.①②④    B.②④⑤   C.②③④   D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆海南瓊海市高二下學期第一次月考理科數(shù)學卷(解析版) 題型:填空題

下列五個命題:

①對于回歸直線方程時,.

②頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù).

③若單調(diào)遞增,則.

④樣本的平均值為,方差為,則 的平均值為,方差為.

⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.

其中正確結(jié)論的是         (填上你認為正確的所有序號).

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列五個命題:

①對于回歸直線方程,時,.

②頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù).

③若單調(diào)遞增,則.

④樣本的平均值為,方差為,則 的平均值為,方差為.

⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.

其中正確結(jié)論的是          (填上你認為正確的所有序號).

查看答案和解析>>

同步練習冊答案