已知圓O:x2+y2=4和點M(1,a),
(1)若過點M有且只有一條直線與圓O相切,求實數(shù)a的值,并求出切線方程;
(2)若,過點M的圓的兩條弦AC.BD互相垂直,求AC+BD的最大值.
【答案】分析:本題考查的是圓的切線方程,即直線與圓方程的應用.(1)要求過點M的切線方程,關鍵是求出切點坐標,由M點也在圓上,故滿足圓的方程,則易求M點坐標,然后代入圓的切線方程,整理即可得到答案.(2)由于直線AC、BD均過M點,故可以考慮設兩個直線的方程為點斜式方程,但由于點斜式方程不能表示斜率不存在的情況,故要先討論斜率不存在和斜率為0的情況,然后利用弦長公式,及基本不等式進行求解.
解答:解:(1)由條件知點M在圓O上,
∴1+a2=4
∴a=±
當a=時,點M為(1,),kOM=
此時切線方程為:y-=-(x-1)
即:x+y-4=0
當a=-時,點M為(1,-),kOM=-,
此時切線方程為:y+=(x-1)
即:x-y-4=0
∴所求的切線方程為:x+y-4=0或即:x-y-4=0
(2)當AC的斜率為0或不存在時,可求得AC+BD=2(+
當AC的斜率存在且不為0時,
設直線AC的方程為y-=k(x-1),
直線BD的方程為y-=(x-1),
由弦長公式l=2
可得:AC=2
BD=2
∵AC2+BD2=4(+)=20
∴(AC+BD)2=AC2+BD2+2AC×BD≤2(AC2+BD2)=40
故AC+BD≤2
即AC+BD的最大值為2
點評:求過一定點的圓的切線方程,首先必須判斷這點是否在圓上.若在圓上,則該點為切點,若點P(x,y)在圓(x-a)2+(y-b)2=r2(r>0)上,則 過點P的切線方程為(x-a)(x-a)+(y-b)(y-b)=r2(r>0);若在圓外,切線應有兩條.一般用“圓心到切線的距離等于半徑長”來解較為簡單.若求出的斜率只有一個,應找出過這一點與x軸垂直的另一條切線.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點為F.若P是圓O上一點,連接PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個交點為C、D,B( x0,y0)是橢圓上異于點A的一個動點,在線段CD上是否存在點T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=9,定點 A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動點,求線段PA的中點M的軌跡方程
(2)設E、F分別是圓O和直線l上任意一點,求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點P(a,b)(ab≠0)是圓O內(nèi)一點,過點P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1,點P在直線x=
3
上,O為坐標原點,若圓O上存在點Q,使∠OPQ=30°,則點P的縱坐標y0的取值范圍是(  )

查看答案和解析>>

同步練習冊答案