【題目】已知圓C經(jīng)過點,且與直線相切, 圓心C在直線.

1)求圓C的方程;

2)過原點的直線截圓C所得的弦長為2,求直線的方程.

【答案】1;(2.

【解析】

1)先由題意,設(shè),半徑為),得到圓C的方程為;根據(jù)題意,得到,解方程組,即可求出結(jié)果;

2)分別討論直線的斜率不存在,直線的斜率存在兩種情況,根據(jù)弦長公式,以及題中條件,即可求出結(jié)果.

1)因為圓心C在直線上,所以可設(shè),半徑為),

則圓C的方程為;

又圓C經(jīng)過點,且與直線相切,

所以,解得,

所以圓C的方程為;

2)當(dāng)直線的斜率不存在時,直線的方程為:,

此時直線截圓C所得的弦長,滿足題意;

當(dāng)直線的斜率存在時,設(shè)直線的方程為,

則圓心到直線的距離為,

又直線截圓C所得的弦長為2,

所以有,即,解得;

此時直線方程為:;

故所求直線方程為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

當(dāng),求曲線在點處的切線與坐標軸圍成的三角形的面積;

在區(qū)間上恒成立求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,橢圓上一點到橢圓兩焦點距離之和為,如圖,為坐標原點,平行與的直線l交橢圓于不同的兩點、

1)求橢圓方程;

2)若的橫坐標為,求面積的最大值;

3)當(dāng)在第一象限時,直線,x軸于,,若PEPF,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是數(shù)列的前項和,,數(shù)列中,,且.

1)求數(shù)列的通項公式;

2)設(shè),求的前項和;

3)證明:對一切,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點A是拋物線的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且滿足,當(dāng)取最大值時,點P恰好在以A、B為焦點的雙曲線上,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若曲線與曲線在它們的公共點處且有公共切線,求的值;

2)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在點處切線的方程;

(2)討論函數(shù)的極值;

(3)若對任意的成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案