已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線
上的兩點,且
,
. 求四邊形
面積
的最大值.
(1);(2)
解析試題分析:(1)確定橢圓標準方程 ,先定位后定量.由等差中項得,根據(jù)橢圓定義
,得
,又
,所以可求
,由橢圓焦點在
軸,寫出橢圓方程;(2)將直線方程和橢圓方程聯(lián)立,并利用
列方程,得
的等式
,求四邊形
面積
的最大值,關(guān)鍵在于建立關(guān)于面積
的目標函數(shù),然后確定函數(shù)的最大值即可,分
和
討論,當
時,結(jié)合平面幾何知識,得
(其中
表示兩焦點到直線
的距離),再結(jié)合
得關(guān)于
的函數(shù),并求其范圍;當
時,該四邊形是矩形,求其面積,從而確定
的范圍,進而確定最大值.
試題解析:(1)依題意,設(shè)橢圓
的方程為
.
構(gòu)成等差數(shù)列,
,
.
又,
.
橢圓
的方程為
.
(2) 將直線的方程
代入橢圓
的方程
中,得
,由直線
與橢圓
僅有一個公共點知,
,化簡得:
.
設(shè),
, (法一)當
時,設(shè)直線
的傾斜角為
,則
,
,
,
,
當
時,
,
,
.當
時,四邊形
是矩形,
.所以四邊形
面積
的最大值為
.
(法二),
.
.
四邊形
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,
,動點
滿足
.
(1)求動點的軌跡
的方程;
(2)在直線:
上取一點
,過點
作軌跡
的兩條切線,切點分別為
.問:是否存在點
,使得直線
//
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的離心率為
,
在橢圓C上,A,B為橢圓C的左、右頂點.
(1)求橢圓C的方程:
(2)若P是橢圓上異于A,B的動點,連結(jié)AP,PB并延長,分別與右準線相交于M1,M2.問是否存在x軸上定點D,使得以M1M2為直徑的圓恒過點D?若存在,求點D的坐標:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的方程為
,雙曲線
的兩條漸近線為
、
.過橢圓
的右焦點
作直線
,使
,又
與
交于點
,設(shè)
與橢圓
的兩個交點由上至下依次為
、
.
(1)若與
的夾角為
,且雙曲線的焦距為
,求橢圓
的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關(guān)于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得
始終平分
?若存在求出
點坐標;若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為直角坐標系
的原點,焦點在
軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓
的動點,
為過
且垂直于
軸的直線上的點,
(
為橢圓的離心率),求點
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com