銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗(yàn)公式數(shù)學(xué)公式,數(shù)學(xué)公式,今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x萬元,
(1)試建立總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式,并給出定義域;
(2)應(yīng)怎樣分配這3萬元資金才能獲得最大總利潤?并求出最大總利潤y(萬元).

解:(1)因?yàn)閷追N商品投資x萬元,
所以對乙種商品投資為3-x萬元
由題意知:(0≤x≤3)
(2)設(shè),
則m≥0且x=3-m2
==
所以當(dāng)
即:
也就是萬元時,
總利潤最大,萬元
故:應(yīng)甲種商品投資萬元,對乙種商品投資萬元時,
總利潤最大,最大值為萬元.
分析:(1)通過設(shè)出甲投資以及乙投資的數(shù)目,設(shè)立函數(shù)表達(dá)式,根據(jù)函數(shù)式直接寫出定義域.
(2)首先要對(1)的函數(shù)分析,設(shè),然后根據(jù)一元二次方程的求最值方法求解.
點(diǎn)評:本題考查函數(shù)模型的選擇與應(yīng)用,通過對實(shí)際問題的分析,構(gòu)造數(shù)學(xué)模型從而解決問題.需要對知識熟練的掌握并應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=
x
5
,Q=
3
5
x
.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m
x+1
+a
,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次為Q1萬元和Q2萬元,它們與投入資金的關(guān)系是Q1=0.4x,Q2=-0.2x2+1.6x,今有10萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入應(yīng)分別為多少?并求最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為數(shù)學(xué)公式,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

同步練習(xí)冊答案