在R t △PAB中,PAPB,點CD分別在PA、PB上,且CDAB,AB=3,AC,則 的值為(    )

A.-7              B.0                C.-3              D.3

 

【答案】

C

【解析】

試題分析:建立如圖所示的直角坐標系,

∵PA=PB,CD∥AB,AB=3,AC= 

∴PA=PB=,PC= 

∴A(,0),B(0, )C( ,0)D(0,

 =( , ), =( , )

 = 

故選C

考點:平面向量數(shù)量積的運算.

點評:本題主要考查了向量的數(shù)量積的求解,解題的關(guān)鍵是建立坐標系,把所求問題坐標化.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在△PAB中,已知A(-
6
,0)
、B(
6
,0)
,動點P滿足|PA|=|PB|+4.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,試在x軸上確定一點T,使得PN⊥QT;
(Ⅲ)在(Ⅱ)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求
OP
OR
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△PAB中,已知數(shù)學(xué)公式數(shù)學(xué)公式,動點P滿足|PA|=|PB|+4.
(I)求動點P的軌跡方程;
(II)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,,試在x軸上確定一點T,使得PN⊥QT;
(III)在(II)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海淀區(qū)一模 題型:解答題

在△PAB中,已知A(-
6
,0)
B(
6
,0)
,動點P滿足|PA|=|PB|+4.
(I)求動點P的軌跡方程;
(II)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,,試在x軸上確定一點T,使得PN⊥QT;
(III)在(II)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求
OP
OR
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

在△PAB中,已知,動點P滿足|PA|=|PB|+4.
(I)求動點P的軌跡方程;
(II)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,,試在x軸上確定一點T,使得PN⊥QT;
(III)在(II)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求的值.

查看答案和解析>>

同步練習冊答案