17.如圖,梯形A1B1C1D1是一平面圖形ABCD的直觀圖(斜二測),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,則原平面圖形ABCD的面積是(  )
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

分析 如圖,根據(jù)直觀圖畫法的規(guī)則,確定原平面圖形四邊形ABCD的形狀,求出底邊邊長,上底邊邊長,以及高,然后求出面積.

解答 解:如圖,根據(jù)直觀圖畫法的規(guī)則,
直觀圖中A1D1∥O′y′,A1D1=1,⇒原圖中AD∥Oy,
從而得出AD⊥DC,且AD=2A1D1=2,
直觀圖中A1B1∥C1D1,A1B1=$\frac{3}{4}$C1D1=3,⇒原圖中AB∥CD,AB=$\frac{3}{4}$CD=3,
即四邊形ABCD上底和下底邊長分別為3,4,高為2,如圖.
故其面積S=$\frac{1}{2}$(3+4)×2=7.
故選:B.

點評 本題考查平面圖形的直觀圖,考查計算能力,作圖能力,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.某名學生默寫英語單詞“bookkeeper(會計)”,他記得這個單詞是由3個“e”,2個“o”,2個“k”,b,p,r各一個組成,2個“o”相鄰,3個“e”恰有兩個相鄰,o,e都不在首位,他按此條件任意寫出一個字母組合,則他寫對這個單詞的概率為(  )
A.$\frac{1}{9600}$B.$\frac{1}{18000}$C.$\frac{1}{4500}$D.$\frac{1}{10800}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在${(\sqrt{x}+\frac{a}{x})^6}(a>0)$的展開式中常數(shù)項的系數(shù)是60,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某四棱錐的三視圖如圖所示,該四棱錐的表面積是(  )
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.命題“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是(  )
A.不存在${x_0}∈R,{2^{x_0}}>0$B.?x∈R,2x>0
C.$?{x_0}∈R,{2^{x_0}}≥0$.D.?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知f(x)為R上的偶函數(shù),當x>0時,f(x)=log6x,則f(-4)+f(9)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)( 。
A.圖象向右平移$\frac{π}{3}$個單位長度得到y(tǒng)=sin2x圖象
B.圖象關(guān)于點($\frac{π}{6}$,0)對稱
C.圖象關(guān)于直線x=-$\frac{π}{12}$對稱
D.在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某公司13個部門接受的快遞的數(shù)量如莖葉圖所示,則這13個部門接受的快遞的數(shù)量的中位數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)是定義在(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有3xf(x)+x2f(x)<0,則不等式(x+2016)3f(x+2016)+27f(-3)>0的解集( 。
A.(-2018,-2016)B.(-∞,-2016)C.(-2019,-2016)D.(-∞,-2019)

查看答案和解析>>

同步練習冊答案