【題目】如圖,在三棱柱中,,,且,底面,為中點(diǎn),點(diǎn)為上一點(diǎn).
(1)求證: 平面;
(2)求二面角 的余弦值;
【答案】(1)詳見解析;(2).
【解析】
(1)連接交于O,連接EO,證明,推出 平面.
(2)以CA,CB,分別為x,y,z軸建立空間直角坐標(biāo)系.求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解二面角的余弦值.
(1)連接交于,連接,
因四邊形為矩形,,為對(duì)角線,所以為中點(diǎn),又為中點(diǎn),
所以,平面,平面,
所以 //平面.
(2)因?yàn)?/span>底面,所以底面,
又,所以以,,分別為x,y,z軸建立空間直角坐標(biāo)系.
則,,,.,,
設(shè)平面的法向量為,則有,即 令,則.
由題意底面,所以為平面的法向量,
所以,又由圖可知二面角為鈍二面角,
所以二面角 的余弦值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),若點(diǎn)與橢圓左焦點(diǎn)構(gòu)成的直線的斜率為與右焦點(diǎn)構(gòu)成的直線的斜率為,且;
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為與軸的交點(diǎn)為,為橢圓的中心,點(diǎn)在橢圓上,且,若,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,,,且,,.
(1)求證:;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角的正弦值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得平面平面?若存在,證明你的結(jié)論,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求,的值;
(2)當(dāng)時(shí),在區(qū)間上至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上點(diǎn)M(3,m)到焦點(diǎn)F的距離為4.
(Ⅰ)求拋物線方程;
(Ⅱ)點(diǎn)P為準(zhǔn)線上任意一點(diǎn),AB為拋物線上過焦點(diǎn)的任意一條弦,設(shè)直線PA,PB,PF的斜率為k1,k2,k3,問是否存在實(shí)數(shù)λ,使得k1+k2=λk3恒成立.若存在,請(qǐng)求出λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列,求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com