是公比為q的等比數(shù)列,是它的前n項和,若的等差數(shù)列,求q

答案:略
解析:

解:設的首項是,則

是等差數(shù)列,得

q=1


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學 來源:重慶 題型:解答題

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學 來源:重慶市高考真題 題型:解答題

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:
。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高考數(shù)學模擬試卷(二)(解析版) 題型:解答題

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學 來源:2009年重慶市高考數(shù)學試卷(理科)(解析版) 題型:解答題

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

同步練習冊答案