(本題滿分12分)
如圖,在四棱錐中,底面,的中點.

(Ⅰ)證明;
(Ⅱ)證明平面
(Ⅰ)由線面垂直得線線垂直:因底面,所以,平面.(Ⅱ)由線線垂直得線面垂直:易得的中點,.由(Ⅰ)知,,所以平面底面在底面內的射影是,,.得平面

試題分析:(Ⅰ)證明:在四棱錐中,因底面
,平面,故
,平面
平面
(Ⅱ)證明:由,,可得
的中點,
由(Ⅰ)知,,且,所以平面
平面,
底面在底面內的射影是,
,綜上得平面
點評:對于立體幾何問題的證明問題,要求我們熟練應用課本上的定理、性質、結論等,考查了學生的空間想象能力
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。

求證:(1)PC⊥BC;
(2)求點A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,,,


(1)若E是PC的中點,證明:平面;
(2)試在線段PC上確定一點E,使二面角P- AB- E的大小為,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
已知:如圖,中,,,是角平分線。求證:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為兩個平面,為兩條直線,且,有如下兩個命題:
①若;②若. 那么( )
A.①是真命題,②是假命題B.①是假命題,②是真命題
C.①、②都是真命題D.①、②都是假命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩條不同直線及平面,則直線的一個充分條件是  (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三個平面,若,且相交但不垂直,分別為內的直線,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以下五個命題中,正確命題的個數(shù)是________.
① 不共面的四點中,其中任意三點不共線;
② 若
③ 對于四面體ABCD,任何三個面的面積之和都大于第四個面的面積;
④ 對于四面體ABCD,相對棱AB CD 所在的直線是異面直線;
⑤ 各個面都是三角形的幾何體是三棱錐。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列命題:
①如果是兩條直線,且//,那么平行于經(jīng)過的任何平面;
②如果平面不垂直于平面,那么平面內一定不存在直線垂直于平面
③若直線,是異面直線,直線,是異面直線,則直線,也是異面直線;
④已知平面⊥平面,且,若,則⊥平面;
⑤已知直線⊥平面,直線在平面內,//,則.
其中正確命題的序號是     .

查看答案和解析>>

同步練習冊答案