已知函數(shù)f(x)=lnx-ax+-1(a∈R).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a≤時(shí),討論f(x)的單調(diào)性.
解析 (1)當(dāng)a=-1時(shí),f(x)=lnx+x+-1,x∈(0,+∞).
∴f′(x)=+1-,∴f(2)=ln2+2,f′(2)=1.
∴曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=x+ln2.
(2)因?yàn)?i>f(x)=lnx-ax+-1,
所以f′(x)=-a+=-,x∈(0,+∞).
令g(x)=ax2-x+1-a,x∈(0,+∞),
①當(dāng)a=0時(shí),g(x)=-x+1,x∈(0,+∞).
所以當(dāng)x∈(0,1)時(shí)g(x)>0,此時(shí)f′(x)<0,函數(shù)f(x)單調(diào)遞減,當(dāng)x∈(1,+∞)時(shí)g(x)<0,此時(shí)f′(x)>0,函數(shù)f(x)單調(diào)遞增.
②當(dāng)a≠0時(shí),由f′(x)=0,解得x1=1,x2=-1.
(ⅰ)若a=時(shí),f′(x)<0,所以函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
(ⅱ)若0<a<時(shí),由f′(x)<0,得x<1或x>-1,所以函數(shù)f(x)在(0,1),單調(diào)遞減,在上單調(diào)遞增.
(ⅲ)當(dāng)a<0時(shí),由于-1<0,由f′(x)<0,得0<x<1,
∴x∈(0,1)時(shí),函數(shù)f(x)遞減;x∈(1,+∞)時(shí),函數(shù)f(x)遞增.
綜上所述:
當(dāng)a≤0時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
當(dāng)a=時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)0<a<時(shí),函數(shù)f(x)在(0,1),上單調(diào)遞減,在上單調(diào)遞增.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;
(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說明理由.
(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;
(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com