中,兩個定點的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點。
(1)求動點C的軌跡方程;
(2)斜率為2的直線交動點C的軌跡于P、Q兩點,求面積的最大值(O是坐標原點)。

(1)(2)

解析試題分析:(1)設動點C(x,y)則D(x,0)。
因為H是CD的中點,故,
因為  所以 故
整理得動點C的軌跡方程.                             ……4分
(2)設并代入
   ,即,               ……6分

又原點O到直線l的距離為,                                      ……8分
                  ……11分
當且僅當時等號成立,故面積的最大值為
……13分
考點:本小題主要考查軌跡方程的求解,直線與橢圓的位置關系,弦長公式,三角形面積公式以及基本不等式的應用,考查學生綜合運用所學知識求解問題的能力.
點評:求解軌跡方程時,要注意將不符合要求的點去掉,即將定義域求出;直線與圓聯(lián)立方程組時,不要忘記驗證

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點。
(1)若是第一象限內該橢圓上的一點,,求點P的坐標;
(2)設過定點M(0,2)的直線與橢圓交于不同的兩點A、B,且為銳角(其中為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C關于軸對稱,它的頂點在坐標原點,并且經(jīng)過點
(1)求拋物線C的標準方程
(2)直線過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標為3,求弦長以及直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,它的準線經(jīng)過雙曲線的一個焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程及其焦點的坐標;
(2)求雙曲線的方程及其離心率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點,它們在軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設點為點關于軸的對稱點,判斷的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知橢圓的中心在坐標原點,長軸長為,離心率,過右焦點的直線
橢圓于,兩點:
(Ⅰ)求橢圓的方程;(Ⅱ)當直線的斜率為1時,求的面積;

查看答案和解析>>

同步練習冊答案