分析 (1)由周期求得ω,由函數(shù)g(x)為奇函數(shù)求得φ和b的值,從而得到函數(shù)f(x)的解析式.
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得x的范圍,即可得到函數(shù)的減區(qū)間,令2x+$\frac{π}{3}$=kπ,k∈z,求得x,即可解得函數(shù)的對稱中心.
解答 解:(1)∵$\frac{2π}{ω}$=2×$\frac{π}{2}$,∴ω=2,∴f(x)=sin(2x+φ)-b.
又g(x)=sin[2(x-$\frac{π}{6}$)+φ]-b+$\sqrt{3}$為奇函數(shù),且0<φ<π,則φ=$\frac{π}{3}$,b=$\sqrt{3}$,
故f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$.
(2)令2x+$\frac{π}{3}$=kπ,k∈z,求得:x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
故函數(shù)的對稱中心為:($\frac{kπ}{2}$-$\frac{π}{6}$,-$\sqrt{3}$),k∈Z,
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得:$\frac{π}{12}$+kπ≤x≤$\frac{7π}{12}$+kπ,(k∈Z),
故函數(shù)的減區(qū)間為[$\frac{π}{12}$+kπ,$\frac{7π}{12}$+kπ](k∈Z).
點評 本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求解析式,正弦函數(shù)的單調性,函數(shù)y=Asin(ωx+φ)的圖象變換,函數(shù)的奇偶性,考查了數(shù)形結合思想的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 29 | B. | -29 | C. | 30 | D. | -30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{6}{e^3})$ | B. | $(-3,\frac{6}{e^3})$ | C. | $(-2e,\frac{6}{e^3})$ | D. | (0,2e) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2] | B. | $(-∞,\frac{1}{2}]∪(1,2]$ | C. | (0,2] | D. | $(0,\frac{1}{2}]∪(1,2]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
房號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A戶型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.5 |
B戶型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8. | 3.9 | 4.2 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{17}{8}$,+∞) | B. | (-∞,$\frac{17}{8}$] | C. | (-∞,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com