設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若對于區(qū)間內(nèi)的任意,總有成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間內(nèi)有兩個不同的零點,求:
①實數(shù)的取值范圍; ②的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N+),其中x1為正實數(shù).
(1)用xn表示xn+1;
(2)求證:對一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)及二次函數(shù)滿足:且。
(1)求和的解析式;
(2);
(3)設(shè),討論方程的解的個數(shù)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達(dá)式.
(2)總利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=a-是偶函數(shù),a為實常數(shù).
(1)求b的值.
(2)當(dāng)a=1時,是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+x,若對任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集為A.
(1)求集合A;
(2)設(shè)集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩條直線l1:y=m和l2:y=,l1與函數(shù)y=|log2x|的圖象從左至右相交于點A、B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當(dāng)m變化時,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com