【答案】
分析:(Ⅰ)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而可得函數(shù)f(x)的最大值;
(Ⅱ)(ⅰ)求導(dǎo)函數(shù),利用函數(shù)f(x)與g(x)=x+
有相同極值點(diǎn),可得x=1是函數(shù)g(x)的極值點(diǎn),從而可求a的值;
(ⅱ)先求出x
1∈[[
,3]時(shí),f(x
1)
min=f(3)=-9+2ln3,f(x
1)
max=f(1)=-1;x
2∈[[
,3]時(shí),g(x
2)
min=g(1)=2,g(x
2)
max=g(3)=
,再將對(duì)于“x
1,x
2∈[
,3],不等式
≤1恒成立,等價(jià)變形,分類討論,即可求得實(shí)數(shù)k的取值范圍.
解答:解:(Ⅰ)求導(dǎo)函數(shù)可得:f′(x)=-2x+
=-
(x>0)
由f′(x)>0且x>0得,0<x<1;由f′(x)<0且x>0得,x>1.
∴f(x)在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù).
∴函數(shù)f(x)的最大值為f(1)=-1.
(Ⅱ)∵g(x)=x+
,∴g′(x)=1-
.
(。┯桑á瘢┲,x=1是函數(shù)f(x)的極值點(diǎn),
又∵函數(shù)f(x)與g(x)=x+
有相同極值點(diǎn),
∴x=1是函數(shù)g(x)的極值點(diǎn),
∴g′(1)=1-a=0,解得a=1.
(ⅱ)∵f(
)=-
-2,f(1)=-1,f(3)=-9+2ln3,
∵-9+2ln3<-
-2<=1,即f(3)<f(
)<f(1),
∴x
1∈[[
,3]時(shí),f(x
1)
min=f(3)=-9+2ln3,f(x
1)
max=f(1)=-1
由(。┲猤(x)=x+
,∴g′(x)=1-
.
當(dāng)x∈[
,1)時(shí),g′(x)<0;當(dāng)x∈(1,3]時(shí),g′(x)>0.
故g(x)在[
,1)為減函數(shù),在(1,3]上為增函數(shù).
∵
,g(1)=2,g(3)=
,
而2<
<
,∴g(1)<g(
)<g(3)
∴x
2∈[[
,3]時(shí),g(x
2)
min=g(1)=2,g(x
2)
max=g(3)=
①當(dāng)k-1>0,即k>1時(shí),
對(duì)于“x
1,x
2∈[
,3],不等式
≤1恒成立,等價(jià)于k≥[f(x
1)-g(x
2)]
max+1
∵f(x
1)-g(x
2)≤f(1)-g(1)=-1-2=-3,
∴k≥-2,又∵k>1,∴k>1.
②當(dāng)k-1<0,即k<1時(shí),
對(duì)于“x
1,x
2∈[
,3],不等式
≤1恒成立,等價(jià)于k≤[f(x
1)-g(x
2)]
min+1
∵f(x
1)-g(x
2)≥f(3)-g(3)=-
,
∴k≤
.
又∵k<1,∴k≤
.
綜上,所求的實(shí)數(shù)k的取值范圍為(-∞,
]∪(1,+∞).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,屬于中檔題.