1.已知點A(2,3)與點B(6,y)的距離等于4$\sqrt{5}$,則y的值是( 。
A.11或5B.-5或-11C.11D.11或-5

分析 將A,B兩點代入兩點之間距離公式,構(gòu)造關(guān)于y的方程,解得答案.

解答 解:∵點A(2,3)與點B(6,y)的距離等于4$\sqrt{5}$,
∴$\sqrt{(2-6)^{2}+(3-y)^{2}}=4\sqrt{5}$,
∴(2-6)2+(3-y)2=80,
∴(3-y)2=64,
解得:y=-5,或y=11,
故選:D

點評 本題考查的知識點是兩點間距離公式的應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b為常數(shù)),在(0,+∞)上有最小值4,則函數(shù)f(x)在(-∞,0)上有( 。
A.最大值4B.最小值-4C.最大值2D.最小值-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.觀察式子:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;
按此規(guī)律猜想第五個的等式為cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在邊長為4的正方形ABCD的邊上有一點P,當(dāng)P點由點B(起點)向點A(終點)沿逆時針方向移動(B→C→D→A)時,三點A、B、P構(gòu)成△ABP,求:
(1)△ABP的面積y關(guān)于點P移動的路程x的函數(shù)關(guān)系式;
(2)當(dāng)路程x為多少時面積y有最大值?并求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)求函數(shù)f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)有一顆彗星,圍繞地球沿一拋物線軌道運行,地球恰好位于這條拋物線的焦點處,當(dāng)此彗星離地球為d萬千米時,經(jīng)過地球和彗星的直線與拋物線的軸的夾角為30°,求這顆彗星與地球的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A(-1,3),B(1,1),C(x,y).
(1)若A,B,C三點共線,求x與y的關(guān)系式;
(2)若$\overrightarrow{AC}$=2$\overrightarrow{AB}$,求點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知在等比數(shù)列{an}中,a3=12,a6=324,則a4=36.

查看答案和解析>>

同步練習(xí)冊答案