7.函數(shù)$y=2sin({\frac{π}{4}-2x})$的單調(diào)增區(qū)間是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

分析 利用誘導(dǎo)公式化簡函數(shù)的解析式,利用正弦函數(shù)的單調(diào)性,求得函數(shù)$y=2sin({\frac{π}{4}-2x})$的單調(diào)增區(qū)間.

解答 解:∵函數(shù)$y=2sin({\frac{π}{4}-2x})$=-2sin(2x-$\frac{π}{4}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
可得函數(shù)f(x)的單調(diào)增區(qū)間是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,
故答案為:$[{kπ+\frac{3π}{8},kπ+\frac{7π}{8}}]({k∈Z})$.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.等差數(shù)列{an}滿足a3=10,a5=4.?dāng)?shù)列的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求S10
(3)求前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則f(0)的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)$(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的圖象如圖所示,令g(x)=f(x)+f'(x),則下列關(guān)于函數(shù)g(x)的說法中不正確的是(  )
A.函數(shù)g(x)圖象的對(duì)稱軸方程為$x=kπ-\frac{π}{12}(k∈Z)$
B.函數(shù)g(x)的最大值為$2\sqrt{2}$
C.函數(shù)g(x)的圖象上存在點(diǎn)P,使得在P點(diǎn)處的切線與直線l:y=3x-1平行
D.方程g(x)=2的兩個(gè)不同的解分別為x1,x2,則|x1-x2|的最小值為$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知變量x,y的取值如表所示:
x456
y867
如果y與x線性相關(guān),且線性回歸方程為$\widehat{y}$=$\widehat$x+2,則$\widehat$的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},則A∩B為(  )
A.(0,1)B.[0,1]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面區(qū)域內(nèi),則$z=\frac{y}{x}$的取值范圍為( 。
A.(2,5)B.[2,5)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對(duì)于由直線x=0,x=1,y=0和曲線y=x2所圍成的曲邊梯形,當(dāng)把區(qū)間[0,1]等分為10個(gè)小區(qū)間時(shí),曲邊梯形的面積近似等于$\frac{57}{200}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.2017年兩會(huì)繼續(xù)關(guān)注了鄉(xiāng)村教師的問題,隨著城鄉(xiāng)發(fā)展失衡,鄉(xiāng)村教師待遇得不到保障,流失現(xiàn)象嚴(yán)重,教師短缺會(huì)嚴(yán)重影響鄉(xiāng)村孩子的教育問題,為此,某市今年要為兩所鄉(xiāng)村中學(xué)招聘儲(chǔ)備未來三年的教師,現(xiàn)在每招聘一名教師需要2萬元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要5萬元,已知現(xiàn)在該鄉(xiāng)村中學(xué)無多余教師,為決策應(yīng)招聘多少鄉(xiāng)村教師搜集并整理了該市100所鄉(xiāng)村中學(xué)在過去三年內(nèi)的教師流失數(shù),得到下面的柱狀圖:
以這100所鄉(xiāng)村中學(xué)流失教師數(shù)的頻率代替1所鄉(xiāng)村中學(xué)流失教師數(shù)發(fā)生的概率,記X表示兩所鄉(xiāng)村中學(xué)在過去三年共流失的教師數(shù),n表示今年為兩所鄉(xiāng)村中學(xué)招聘的教師數(shù).為保障鄉(xiāng)村孩子教育部受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.
(Ⅰ)求X的分布列;
(Ⅱ)若要求P(X≤n)≥0.5,確定n的最小值;
(Ⅲ)以未來四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案