(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G。

(1)求證:圓心O在直線AD上;
(2)求證:點(diǎn)C是線段GD的中點(diǎn)。

(1) 
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上。(2))連接DF,由(I)知,DH是⊙O的直徑, ∴∠DFH=90°,∴∠FDH+∠FHD=90°,又∠G+∠FHD=90°,∴∠FDH=∠G,又⊙O與AC相切于點(diǎn)F ,∴∠AFH=∠GCF=∠FHD  ∴∠GCF=∠G,∴CG=CF=CD,∴點(diǎn)C是線段GD的中點(diǎn)。

解析試題分析:(I)證明:

 
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上!5分
(II)連接DF,由(I)知,DH是⊙O的直徑,
∴∠DFH=90°,∴∠FDH+∠FHD=90°
又∠G+∠FHD=90°,∴∠FDH=∠G
又⊙O與AC相切于點(diǎn)F 
∴∠AFH=∠GCF=∠FHD  ∴∠GCF=∠G
∴CG=CF=CD
∴點(diǎn)C是線段GD的中點(diǎn)。   ………………10分
考點(diǎn):圓的切線的性質(zhì)定理證明。
點(diǎn)評:本題利用了切線的性質(zhì),四邊形的內(nèi)角和為360度及圓周角定理求解.屬于基礎(chǔ)題型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),
且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.

(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.                       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)M在菱形ABCDBC邊上,連結(jié)AMBD于點(diǎn)E,過菱形ABCD的頂點(diǎn)CCNAM,分別交BD、AD于點(diǎn)FN,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,已知的切線,為切點(diǎn),的割線,與交于兩點(diǎn),圓心的內(nèi)部,點(diǎn)的中點(diǎn).

(1)證明四點(diǎn)共圓;
(2)求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于HH,

求證:(1)EF⊥AB         (2)OH=ME

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講
如圖,四邊形是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半圓交于點(diǎn),延長

(1)求證:的中點(diǎn);
(2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,從圓外一點(diǎn)作圓的兩條切線,切點(diǎn)分別為交于點(diǎn),設(shè)為過點(diǎn)且不過圓心的一條弦,求證:四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

曲線與坐標(biāo)軸的交點(diǎn)是(   )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

A.選修4-1:幾何證明選講

如圖,已知、是圓的兩條弦,且是線段的垂直平分線,已知,求線段的長度.

查看答案和解析>>

同步練習(xí)冊答案