如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上點(diǎn),且AM=BN,將三角形ADE沿AE折起.下列說法正確的是    .(填上所有正確的序號)
①不論D折至何位置(不在平面ABC內(nèi))都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內(nèi))都有MN∥AB;
④在折起過程中,一定存在某個位置,使EC⊥AD.
【答案】分析:利用直線和平面平行、直線和平面垂直的判定定理、性質(zhì)定理,結(jié)合反例、反證法的思想方法,逐一判斷得出答案.
解答:解:由已知,在未折疊的原梯形中,AB∥DE,BE∥AD.所以四邊形ABED為平行四邊形,∴DA=EB.折疊后得出圖形如下:
①過M,N分別作AE,BC的平行線,交ED,EC于F,H.連接FH
,
∵AM=BN,∴EN=DM,等量代換后得出HN=FM,
又CB∥EA,∴HN∥FM,
∴四邊形MNHF是平行四邊形.
∴MN∥FH
MN?面CED,HF?面CED.∴MN∥平面DEC.  ①正確
②由已知,AE⊥ED,AE⊥EC,
∴AE⊥面CED,HF?面CED∴AE⊥HF,∴MN⊥AE;②正確
③MN與AB 異面.假若MN∥AB,則MN與AB確定平面MNAB,
從而BE?平面MNAB,AD?平面MNAB.與BE和AD是異面直線矛盾.③錯誤.
④當(dāng)CE⊥ED時,EC⊥AD.
這是因?yàn),由于CE⊥EA,EA∩ED=E,
所以CE⊥面AED,AD?面AED.得出EC⊥AD.④正確.
故答案為:①②④.
點(diǎn)評:本題考查空間直線和直線、直線和平面位置關(guān)系的判斷.利用有關(guān)的定義、定理、性質(zhì)確定命題的正確性,結(jié)合反例、反證法說明命題的錯誤性,是判斷命題真假的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求證:平面SAB⊥平面SAD;
(Ⅱ)設(shè)SB的中點(diǎn)為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點(diǎn)E、F分別是PC、BD的中點(diǎn),現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
(1)求證:EF∥平面PAD;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動點(diǎn)P在BCD內(nèi)運(yùn)動(含邊界),設(shè)
AP
AD
AB
,則α+β的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點(diǎn),則
PA
PB
的值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點(diǎn),且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
2
2

(Ⅰ)求證:BC⊥平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

同步練習(xí)冊答案