定義在[-2,2]上的奇函數(shù)g(x),當(dāng)x≥0時,g(x)單調(diào)遞減,若g(1-2m)<g(m),求m的取值范圍.
由題意可得函數(shù)g(x)在定義域[-2,2]上是減函數(shù),再由g(1-2m)<g(m),可得
-2≤1-2m≤2
-2≤m≤2
1-2m>m

解得-
1
2
<m<
1
3
,
故m的取值范圍為(-
1
2
,
1
3
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)函數(shù)的定義域和值域均為[-1,1];(2)函數(shù)的圖象關(guān)于原點成中心對稱;(3)函數(shù)在定義域上單調(diào)遞增;(4)Af(x)dx=0(其中A為函數(shù)的定義域);(5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
2
<|AB|≤2
.請寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)lnx≤xem2-m-1對任意的正實數(shù)x恒成立,則m的取值范圍是( 。
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x+1)為偶函數(shù),且f(x)在(1,+∞)上遞減,設(shè)a=f(log210),b=f(log310),c=f(0.10.2),則a,b,c的大小關(guān)系正確的是( 。
A.a(chǎn)>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(B題)奇函數(shù)y=f(x)在定義域[-1,1]上是增函數(shù),則滿足f(m-1)+f(2m-1)<0的m的取值范圍為( 。
A.[0,1]B.[0,
2
3
C.[0,
2
3
]
D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)一個矩形的面積為8,如果此矩形的對角線長為y,一邊長為x,試把y表示成x的函數(shù).
(2)證明:函數(shù)f(x)=x2+1是偶函數(shù),且在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)-g(x)=x2+2x+3,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)f(x)是奇函數(shù),x∈R,當(dāng)x>0時,f(x)=x2-sinx,求:當(dāng)x<0時,f(x)的表達式.

查看答案和解析>>

同步練習(xí)冊答案