解:(1)由于此時(shí)
=
,
又因?yàn)槭窃?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/728.png' />=1的條件下,有
=
=
≤1(x
2=±1時(shí)取最大值),
所以此時(shí)有||f||=1;
(2)由f(x
1,x
2)=(x
1+x
2,x
1-x
2)=λ(x
1,x
2),可得:
,
解此方程組可得:(λ-1)(λ+1)=1,從而λ=±
.
當(dāng)λ=
時(shí),解方程組
,此時(shí)這兩個(gè)方程是同一個(gè)方程,
所以此時(shí)方程有無窮多個(gè)解,為
(寫出一個(gè)即可),其中m∈R且m≠0.
當(dāng)λ=-
時(shí),同理可得,相應(yīng)的
(寫出一個(gè)即可),其中m∈R且m≠0.
(3)解方程組
,可得x
1(a
1-λ,b
1)+x
2(a
2,-b
1-λ)=0
從而向量(a
1-λ,b
1)與(a
2,-b
1-λ)平行,
從而有a
1,a
2,b
1,b
2應(yīng)滿足:
.
當(dāng)f(
)=λ
時(shí),f有唯一的特征值,且||f||=|λ|.具體證明為:
由f的定義可知:f(x
1,x
2)=λ(x
1,x
2),所以λ為特征值.
此時(shí)a
1=λ,a
2=0,b
1=0,b
2=λ滿足:
,所以有唯一的特征值.
在
=1的條件下
=λ
2,從而有||f||=|λ|.
分析:(1)由新定義可得
=
,利用
=1,可得
≤1,從而可得結(jié)論;
(2)由特征值的定義可得:
,由此可得f的特征值,及相應(yīng)的
;
(3)解方程組
,可得x
1(a
1-λ,b
1)+x
2(a
2,-b
1-λ)=0,從而可得a
1,a
2,b
1,b
2應(yīng)滿足的條件,當(dāng)f(
)=λ
時(shí),f有唯一的特征值,且||f||=|λ|,再進(jìn)行證明即可.
點(diǎn)評(píng):本題考查新定義,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,正確運(yùn)用新定義是關(guān)鍵.