設(shè)f(k)是滿足不等式log2x+log2(3·2k-1-x)≥2k-1(k∈N*)的自然數(shù)x的個數(shù).

(1)求f(k)的表達式;

(2)記Sn=f(1)+f(2)+…+f(n),Pn=n2+n-1,當n≤5時試比較Sn與Pn的大小.

解:(1)由不等式log2x+log2(3·2k-1-x)≥2k-1,得x(3·2k-1-x)≥22k-1,

    解之,得2k-1≤x≤2k,

    故f(k)=2k-2k-1+1=2k-1+1.

    (2)∵Sn=f(1)+f(2)+…+f(n)=1+2+22+23+…+2n-1+n=2n+n-1,

    ∴Sn-Pn=2n+n-1-(n2+n-1)=2n-n2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=a•qx(a,q是正數(shù),q≠1),不等的正整數(shù)m、k、h滿足k2=mh,試比較[f(m)]
1
m
[f(h)]
1
h
[f(k)]
2
k
的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為M,若函數(shù)f(x)滿足:(1)f(x)在M內(nèi)單調(diào)遞增,(2)方程f(x)=x在M內(nèi)有兩個不等的實根,則稱f(x)為遞增閉函數(shù),現(xiàn)在f(x)=k+2
x+1
是遞增閉函數(shù),則實數(shù)k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:四川省古藺縣中學校2012屆高三第一學月能力監(jiān)測數(shù)學試題 題型:013

設(shè)函數(shù)f(x)的定義域為M,若函數(shù)f(x)滿足:(1)f(x)在M內(nèi)單調(diào)遞增,(2)方程f(x)=x在M內(nèi)有兩個不等的實根,則稱f(x)為遞增閉函數(shù).若f(x)=k-k是遞增閉函數(shù),則實數(shù)k的取值范圍是

[  ]

A.(-∞,0]

B.[2,+∞)

C.(-∞,-2]

D.[-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)的定義域為M,若函數(shù)f(x)滿足:(1)f(x)在M內(nèi)單調(diào)遞增,(2)方程f(x)=x在M內(nèi)有兩個不等的實根,則稱f(x)為遞增閉函數(shù),現(xiàn)在f(x)=k+2
x+1
是遞增閉函數(shù),則實數(shù)k的取值范圍是( 。
A.(-2,+∞)B.(-∞,1]C.(-2,-1]D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年湖北省宜昌一中、荊州中學高三(上)聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)的定義域為M,若函數(shù)f(x)滿足:(1)f(x)在M內(nèi)單調(diào)遞增,(2)方程f(x)=x在M內(nèi)有兩個不等的實根,則稱f(x)為遞增閉函數(shù),現(xiàn)在是遞增閉函數(shù),則實數(shù)k的取值范圍是( )
A.(-2,+∞)
B.(-∞,1]
C.(-2,-1]
D.(-2,1)

查看答案和解析>>

同步練習冊答案