【題目】如圖,在矩形中,已知,點、分別在、上,且,將四邊形沿折起,使點在平面上的射影在直線上.
(I)求證: ;
(II)求點到平面的距離;
(III)求直線與平面所成的正弦值.
【答案】(1)見解析(2)2(3)
【解析】試題分析:
(1)由折疊關(guān)系可得平面, .
(2)利于題意結(jié)合勾股定理列方程組,求解可得點到平面的距離為2;
(3)做出直線與平面所成的角,結(jié)合(1)(2)的結(jié)論可得直線與平面所成的正弦值為.
試題解析:
解:(1)由于平面, ,又由于, ,
平面, .
法一:(2)設(shè), ,過作垂直于,
因線段, 在翻折過程中長度不變,根據(jù)勾股定理:
,可解得,
線段長度為,即點的平面的距離為.
(2)延長交于點,因為
點到平面的距離為點到平面距離的,
點平面的距離為,而,
直線與平面新角的正弦值為.
法二:(2)如圖,過點作,過點作平面,分別以、、為、、軸建立空間直角坐標系,設(shè)點,由于,
解得于是,所以線段的長度為.
即點到平面的距離為.
(3)從而,故,
設(shè)平面的一個法向量為,設(shè)直線與平面所成角的大小為,
則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在R上的奇函數(shù),對x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)是R上的減函數(shù);
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量 (單位:t)和年利潤 (單位:千元)的影響.對近8年的年宣傳費和年銷售量 (i=1,2,…,8)數(shù)據(jù)作了初步處理,得到右面的散點圖及一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤與的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費=49時,年銷售量及年利潤的預(yù)報值是多少?
②年宣傳費為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù), …,,其回歸直線的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求的單調(diào)區(qū)間;
(2)若時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)),現(xiàn)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(1)寫出直線和曲線的普通方程;
(2)已知點為曲線上的動點,求到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點的動直線與圓: 交于M,N兩點.
(Ⅰ)設(shè)線段MN的中點為P,求點P的軌跡方程;
(Ⅱ)若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)切線斜率中的最大值;
(Ⅱ)若關(guān)于的方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com