【題目】已知拋物線C1:x2=4y 的焦點F也是橢圓c2:的一個焦點, C1和C2的公共弦長為
(1)求 C2的方程;
(2)過點F 的直線 l與 C1相交于A與B兩點, 與C2相交于C , D兩點,且與 同向
(。┤ 求直線l的斜率;
(ⅱ)設(shè) C1在點 A處的切線與 x軸的交點為M ,證明:直線l 繞點 F旋轉(zhuǎn)時, MFD總是鈍角三角形。
【答案】(1)
(2)(i),
(ii)見解析。
【解析】(1)根據(jù)已知條件可求得C2的焦點坐標(biāo)為(0,1),再利用公共弦長為即可求解由C1:知其焦點F的坐標(biāo)(0,1)因為F也是橢圓C2的一焦點,所以①又C1與C2的公共弦長為 , C1與C2都關(guān)于y軸對稱,且C1的方程為由此易得C1與C2公共點的坐標(biāo)為所以,②聯(lián)立①,②得a2=9,b2=8故C2的方程為
(2)(。┰O(shè)直線l的斜率為k,則l的方程為y=kx+1,由得x2+16kx+64=0,根據(jù)條件可知 , 從而可以建立關(guān)于k的方程,即可求解,如圖f因為與同向且所以 , 從而,于是③,設(shè)直線l的斜率為k,則l的方程為y=kx+1,由得而x1x2是這個方程的兩個根所以由得(9+8k)2+16kx-64=0而x3x4是這個方程的兩個根,所以⑤將④⑤帶入③得
, 即 , 所以 , 解得,k=
(ⅱ)根據(jù)條件可說明 , 因此是銳角,從而是鈍角,即可得證由令y=0得即所以,而于是因此是銳角。
【考點精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程和橢圓的參數(shù)方程的相關(guān)知識可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:;橢圓的參數(shù)方程可表示為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實數(shù)根,則實數(shù)ω的取值范圍為( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點x軸正半軸為極軸的極坐標(biāo)系中,曲線C2::=2sin , C3:=2cos
(1)求C2與C3交點的直角坐標(biāo)
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)I卷)如圖,四邊形ABCD為菱形,∠ABC=120°,E , F是平面ABCD同一側(cè)的兩點,BE⊥平面ABCD , DF⊥平面ABCD , BE=2DF , AE⊥EC.
(1)證明:平面AEC⊥平面AFC
(2)求直線AE與直線CF所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示,若將運動員按成績由好到差編為號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間上的運動員人數(shù)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對于不相等的實數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對于任意不相等的實數(shù)x1, x2 , 都有m>0;
(2)對于任意的a及任意不相等的實數(shù)x1, x2 , ,都有n>0;
(3)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=n;
(4)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
A.16
B.18
C.25
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖北)設(shè). 若p:成等比數(shù)列;
q:,則( )
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com