13.函數(shù)$y=tan({\frac{π}{2}-x})$$x∈[{-\frac{π}{4},\frac{π}{4}}]$且x≠0的值域?yàn)椋ā 。?table class="qanwser">A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-∞,1)D.[-1,+∞)

分析 利用$x∈[{-\frac{π}{4},\frac{π}{4}}]$且x≠0,可得$\frac{π}{4}$≤$\frac{π}{2}$-x≤$\frac{3π}{4}$且$\frac{π}{2}$-x≠$\frac{π}{2}$,從而可求函數(shù)的值域.

解答 解:∵$x∈[{-\frac{π}{4},\frac{π}{4}}]$且x≠0,
∴$\frac{π}{4}$≤$\frac{π}{2}$-x≤$\frac{3π}{4}$且$\frac{π}{2}$-x≠$\frac{π}{2}$,
∴y=tan($\frac{π}{2}$-x)∈(-∞,-1]∪[1,+∞)
故選:B.

點(diǎn)評(píng) 本題考查正切函數(shù)的值域,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n},0≤{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$,a1=$\frac{3}{5}$,Sn為{an}的前n項(xiàng)和,則S2016=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若x=$\frac{π}{4}$是函數(shù)f(x)的一條對(duì)稱軸,則實(shí)數(shù)ω的值可以是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|0<x<2},B={x|1-x2>0},則A∩(∁RB)=(  )
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)$z=\frac{1+i}{1-i}$,其中i是虛數(shù)單位,則z2017的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果$sinα=\frac{2}{3},cosβ=-\frac{1}{4},α$與β為同一象限角,則sin(α-β)=$\frac{5\sqrt{3}-2}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對(duì)價(jià)格y(單位:千元/噸)和利潤(rùn)z的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)z取到最大值?(保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個(gè)圖案:

則第n個(gè)圖案中的地面磚共有5n+2塊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,則點(diǎn)(2,-2$\sqrt{3}$)的極坐標(biāo)是( 。
A.(4,$\frac{π}{3}$)B.(4,$\frac{4π}{3}$)C.(-4,-$\frac{2π}{3}$)D.(4,-$\frac{2π}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案