設(shè) 
(1)若是函數(shù)的極大值點(diǎn),求的取值范圍;
(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.

(1);  (2) .

解析試題分析:(1)對(duì)函數(shù)求導(dǎo)
求出零點(diǎn),分析單調(diào)性,找出極大值點(diǎn)與1的關(guān)系,進(jìn)行計(jì)算;
(2)原問題轉(zhuǎn)化為當(dāng)時(shí), ,利用第一問求出最值,解不等式.
試題解析:(1)
當(dāng)時(shí),f(x)在(0,1)遞減,在(1,+)遞增,故f(x)在x=1處取到極小值,不合舍去。
當(dāng)時(shí),f(x)在(0,a-1)遞增,在(a-1,1)遞減,在(1,+)遞增,故f(x)在x=1處取到極小值,不合舍去。
當(dāng)時(shí),f(x)在(0,1)和(1,+)均遞增,故f(x)在x=1處沒有極值,不合舍去。
當(dāng)時(shí),f(x)在(0,1)遞增,在(1,a-1)遞減,在(a-1, +)遞增,故f(x)在x=1處取到極大值,符合題意。
綜上所述,當(dāng),即時(shí),是函數(shù)的極大值點(diǎn).     6分 
(2)在上至少存在一點(diǎn),使成立,等價(jià)于
當(dāng)時(shí), .由(1)知,①當(dāng),即時(shí),
函數(shù)上遞減,在上遞增,
,解得.由,解得, ; ②當(dāng),即時(shí),函數(shù)上遞增,在上遞減,
綜上所述,當(dāng)時(shí),在上至少存在一點(diǎn),使成立.  13分
考點(diǎn):導(dǎo)數(shù)計(jì)算,轉(zhuǎn)化與化歸思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線
(1)求曲線在點(diǎn)處的的切線方程;
(2)過原點(diǎn)作曲線的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)預(yù)計(jì)從2013年1月份起的前x個(gè)月,顧客對(duì)某商品的需求總量p(x)(單位:件)與x的關(guān)系近似的滿足,且)。該商品第x月的進(jìn)貨單價(jià)q(x)(單位:元)與x的近似關(guān)系是

(1)寫出這種商品2013年第x月的需求量f(x)(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價(jià)為185元,若不計(jì)其他費(fèi)用且每月都能滿足市場(chǎng)需求,試問該商場(chǎng)2013年第幾個(gè)月銷售該商品的月利潤(rùn)最大,最大月利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求上的最大值;
(3)試證明:對(duì),不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為-1.
(1)求的值及函數(shù)的極值;(2)證明:當(dāng)時(shí),;
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實(shí)數(shù)的值;
(3)設(shè)有兩個(gè)極值點(diǎn)(),求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)在區(qū)間上恰有一個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)上的最大值與最小值的差為          .

查看答案和解析>>

同步練習(xí)冊(cè)答案