9.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(-5)=( 。
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

分析 根據(jù)奇函數(shù)的心智以及條件求得f(2)的值,化簡(jiǎn)f(-5)為-2f(2)-f(1),從而得到它的值.

解答 解:函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),
取x=-1,可得f(1)=f(-1)+f(2)=-f(1)+f(2),∴f(2)=2f(1)=1,
則f(-5)=f(-3-2)=f(-3)+f(-2)=f(-2-1)+f(-2)=2f(-2)+f(-1)=-2f(2)-f(1)=-2×1-$\frac{1}{2}$=-$\frac{5}{2}$,
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,已知多面體EABCDF的底面ABCD是邊長(zhǎng)為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=$\frac{1}{2}$EA=1.則直線EB與平面ECF所成角的正弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.命題“?x0∈R,${x_0}^2-{x_0}+1≤0$”的否定為(  )
A.?x0∈R,${x_0}^2-{x_0}+1≤0$B.?x0∈R,${x_0}^2-{x_0}+1>0$
C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.袋中有6個(gè)黃色、4個(gè)白色的乒乓球,做不放回抽樣,每次任取1個(gè)球,取2次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率說(shuō)法正確的是( 。
A.事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黃色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黃色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖是某工廠對(duì)甲乙兩個(gè)車間各10名工人生產(chǎn)的合格產(chǎn)品的統(tǒng)計(jì)結(jié)果的莖葉圖.設(shè)甲、乙的中位數(shù)分別為x、x,甲、乙的方差分別為s2、s2,則( 。
A.x<x,s2<s2B.x>x,s2>s2
C.x>x,s2<s2D.x<x,s2>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足當(dāng)x∈(1,2)時(shí),f(x-1)=2f($\frac{1}{x-1}$),當(dāng)x∈(1,3]時(shí),f(x)=lnx,若函數(shù)g(x)=$\frac{f(x)-ax}{x-1}$在區(qū)間[$\frac{1}{3}$,1)∪(1,3]上有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知圓C:(x+1)2+y2=32,直線l與一、三象限的角平分線垂直,且圓C上恰有三個(gè)點(diǎn)到直線l的距離為2$\sqrt{2}$,則直線l的方程為( 。
A.y=-x-5B.y=-x+3C.y=-x-5或y=-x+3D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知兩個(gè)平面垂直,下列命題:
①一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線.
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無(wú)數(shù)條直線.
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面.
④一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
其中正確命題的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案