已知x∈數(shù)學公式,函數(shù)f(x)=log3數(shù)學公式
(1)求函數(shù)f(x)最大值和最小值;
(2)若方程f(x)+m=0有兩根α,β,試求αβ的值

解:(1)f(x)=(log3x-3)(log3x+1)=(log3x)2-2log3x-3
令log3x=t,由得,t∈[-3,-2]
∴y=t2-2t-3,t∈[-3,-2]
當t=-3時,ymax=12
當t=-2時,ymin=5
(2)(log3x)2-2log3x-3+m=0,有兩個根α、β
令log3x=t,則t2-2t-3+m=0也有兩根,不妨設t1=log3α,t2=log3β
則t1+t2=log3α+log3β=log3(αβ)=2
∴αβ=9
分析:(1)將函數(shù)變形f(x)=(log3x-3)(log3x+1)=(log3x)2-2log3x-3,令log3x=t,轉化為二次函數(shù)解決.
(2)方程f(x)+m=0有兩根α,β,令log3x=t,則t2-2t-3+m=0也有兩根,再用韋達定理求解.
點評:本題主要考查一般函數(shù)通過變形轉化為基本函數(shù)解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)的導函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實數(shù).
(1)若曲線y=f(x)在點(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(xiàn)(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)、g(x),下列說法正確的是( 。
A、f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)B、f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)C、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)D、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省上饒市上饒縣中學高三(上)第一次月考數(shù)學試卷(文科)(特)(解析版) 題型:解答題

已知三次函數(shù)f(x)的導函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實數(shù).
(1)若曲線y=f(x)在點(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市鄄城實驗中學高三(下)雙周適應性訓練數(shù)學試卷4(文科)(解析版) 題型:解答題

已知三次函數(shù)f(x)的導函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實數(shù).
(1)若曲線y=f(x)在點(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習冊答案