(1)求函數(shù)y=
ln(x+1)
-x2-3x+4
的定義域.
(2)7log72-(9.6)0-(3
3
8
).
-
2
3
-log3
427
分析:(1)根據(jù)函數(shù)結(jié)構(gòu)列出限制條件,解不等式組;(2)利用運(yùn)算性質(zhì)和結(jié)論化簡(jiǎn).
解答:解:(1)根據(jù)題意有
x+1>0
-x2-3x+4>0
,
解得:
x>-1
-4<x<1
,即-1<x<1,
所以函數(shù)的定義域?yàn)椋?1,1).
(2)原式=2-1-(
27
8
)-
2
3
-log327
1
4
=1-(
3
2
)-2-
1
4
×3=-
7
36
點(diǎn)評(píng):(1)考察函數(shù)的定義域的求解,注意根據(jù)結(jié)構(gòu)列條件.(2)考察指對(duì)運(yùn)算,掌握指對(duì)運(yùn)算性質(zhì)、細(xì)心計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量
OA
OB
,
OC
 滿足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍;
(3)若對(duì)任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•茂名二模)已知f′(x)是f(x)的導(dǎo)函數(shù),f(x)=ln(x+1)+m-2f′(1),m∈R,且函數(shù)f(x)的圖象過(guò)點(diǎn)(0,-2).
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)設(shè)g(x)=
1x+1
+af(x),(a≠0)
,若g(x)>0在定義域內(nèi)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•中山一模)已知A、B、C是直線l上的不同的三點(diǎn),O是直線外一點(diǎn),向量
OA
、
OB
、
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[
1
6
1
3
]
,a>ln
1
3
,證明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)求函數(shù)y=
ln(x+1)
-x2-3x+4
的定義域.
(2)7log72-(9.6)0-(3
3
8
).
-
2
3
-log3
427

查看答案和解析>>

同步練習(xí)冊(cè)答案