13.已知集合A={x|x2-6x+8≤0},B={1,2,3,4,5},則陰影部分所表示的集合的元素個數(shù)為( 。
A.1B.2C.3D.4

分析 由陰影部分表示的集合為A∩B,然后根據(jù)集合的運算即可.

解答 解:由Venn圖可得陰影部分對應的集合為A∩B,
A={x|x2-6x+8≤0}={x|2≤x≤4},
則A∩B={2,3,4},
則對應集合元素個數(shù)為3,
故選:C

點評 本題主要考查集合的基本運算,利用Venn圖確定集合的關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集為$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.當今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,用莖葉圖表示如圖:
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認為經(jīng)常使用手機對學習成績有影響?
及格(≥60)不及格合計
很少使用手機20727
經(jīng)常使用手機101323
合計302050
(2)從50人中,選取一名很少使用手機的同學記為甲和一名經(jīng)常使用手機的同學記為乙,解一道數(shù)列題,甲、乙獨立解決此題的概率分別為P1,P2,P2=0.4,若P1-P2≥0.3,則此二人適合結(jié)為學習上互幫互助的“師徒”,記X為兩人中解決此題的人數(shù),若E(X)=1.12,問兩人是否適合結(jié)為“師徒”?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥K00.100.050.025
K02.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},則∁UB=( 。
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓的標準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{\sqrt{3}}{2}$,且橢圓上的點到其中一個焦點最大距離為2+$\sqrt{3}$,拋物線C以原點為頂點,以橢圓與x軸正半軸的交點為焦點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知點M(2,0),問:x軸上是否存在一定點P,使得對于拋物線C上的任意兩點A和B,當$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)時,恒有點M到直線PA與PB的距離相等?若存在,則求點P的坐標,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參加抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,y表示開業(yè)第x天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(Ⅰ)若從這7天隨機抽取兩天,求至少有1天參加抽獎人數(shù)超過10的概率;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在公差大于0的等差數(shù)列{an}中,2a7-a13=1,且a1,a3-1,a4+9成等比數(shù)列,則數(shù)列{(-1)n-1an}的前21項和為( 。
A.21B.-21C.441D.-441

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某商場搞促銷,規(guī)定顧客購物達到一定金額可抽獎,最多有三次機會,每次抽中,可依次分別獲得20元、30元、50元獎金,顧客每次抽中后,可以選擇帶走所得獎金,結(jié)束抽獎;也可以選擇繼續(xù)抽獎,若有任何一次沒有抽中,則連同前面所得獎金也全部歸零,結(jié)束抽獎,設(shè)顧客甲第一次、第二次、第三次抽中的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選擇繼續(xù)抽獎的概率均為$\frac{1}{2}$,且每次是否抽中互不影響.
(Ⅰ)求顧客甲第一次抽中,但所得獎金為零的概率;
(Ⅱ)設(shè)該顧客所得獎金總數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x-2)=f(x+2),且當x∈[-2,0]時f(x)=($\frac{1}{2}$)x-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>1)在區(qū)間[-2,6]內(nèi)恰有三個不同的實根,則實數(shù)a的取值范圍是($\root{3}{4}$,2).

查看答案和解析>>

同步練習冊答案