已知函數(shù)f(x)是[-2,2]上的單調(diào)函數(shù),若f(1)=-2,f(-1)=2,則函數(shù)f(x)在[-2,2]上是單調(diào)
遞減
遞減
函數(shù).
分析:根據(jù)函數(shù)f(x)是[-2,2]上的單調(diào)函數(shù),則函數(shù)在在[-2,2]上單調(diào)遞增或單調(diào)遞減,根據(jù)f(1)=-2,f(-1)=2,分析出函數(shù)值隨自變量的增大的變化趨勢(shì),進(jìn)而根據(jù)增(減)函數(shù)的定義可得答案.
解答:解:∵函數(shù)f(x)是[-2,2]上的單調(diào)函數(shù),
且f(1)=-2,f(-1)=2,
∴f(1)<f(-1)
又∵1>-1
故在區(qū)間[-2,2]上,函數(shù)值隨自變量的增大而減小
故函數(shù)f(x)在[-2,2]上是單調(diào)遞減函數(shù)
故答案為:遞減
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性的判斷,熟練掌握單調(diào)函數(shù)的概念是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是偶函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(-
1
2
)
的值為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是 R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點(diǎn),那么|f(x)|<1的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且當(dāng)x∈(0,
3
2
)
時(shí),f(x)=2-x+1,則f(8)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上,圖象關(guān)于原點(diǎn)對(duì)稱,且是f(x+1)=-
1
f(x)
,當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(log
1
2
6)=
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案