已知各項為正數(shù)的數(shù)列{an}滿足a12+a22+a32+…+an2=
13
(4n3-n),(n∈N*).
(Ⅰ)求數(shù)列{an}的前n項和Sn;
(Ⅱ)記數(shù)列{nan}的前n項和為Tn,試用數(shù)學(xué)歸納法證明對任意n∈N*,都有Tn≤nSn
分析:(I)因為n≥2時,(a12+a22+a32+…+an2)-(a12+a22+a32+…+an-12)=an2,從而求出an,再根據(jù)等差數(shù)列的性質(zhì)可知求出數(shù)列的首項與公差,根據(jù)首項與公差寫出前n項和的公式即可;
(II)先根據(jù)當(dāng)n=1時,把n=1代入求值不等式成立;再假設(shè)n=k時關(guān)系成立,利用變形可得n=k+1時關(guān)系也成立,綜合得到對于任意n∈N*時都成立.
解答:解:(Ⅰ)當(dāng)n=1時,有a12=
1
3
(4×12-1)=1,又an>0,所以 a1=1(1分)
當(dāng)n≥2時,(a12+a22+a32+…+an2)-(a12+a22+a32+…+an-12)=an2
=
1
3
(4n3-n)-
1
3
[4(n-1)3-(n-1)]=
4
3
[n3-(n-1)3]-
1
3

=
4
3
(n2+n2-n+n2-2n+1)-
1
3
=4n2-4n+1=(2n-1)2
所以an=2n-1,且當(dāng)n=1時,a1=2×1-1=1  (3分)
又an-a n-1=(2n-1)-[2(n-1)-1]=2,
因此數(shù)列{an}是以1為首項且公差為2的等差數(shù)列,
所以:Sn=n+
1
2
n×n(n-1)×2=n2,(2分)
證明:(Ⅱ)(1)當(dāng)n=1時,T1=1×1=1,
1×S1=1×1=1,關(guān)系成立 (1分)
(2)假設(shè)當(dāng)n=k時,關(guān)系成立,即Tk≤kSk,則
1×1+2×a2+1+…+kak≤k3(1分) 
 那么T k+1=1×1+2×a2+…+kak+(k+1)a k+1≤k3+(k+1)(2k+1)
=k3+2k2+3k+1<k3+3k2+3k+1=(k+1)3,即當(dāng)n=k+1時關(guān)系也成立(3分)  
根據(jù)(1)和(2)知,關(guān)系式Tn≤nSn對任意n∈N*都成立  (1分)
點(diǎn)評:此題是一道綜合題,要求學(xué)生掌握等差數(shù)列的性質(zhì),會求等差數(shù)列的通項公式及前n項的和公式,同時要求學(xué)生掌握數(shù)學(xué)歸納法在證明題中的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項為正數(shù)的數(shù)列{an}的前n項和為{Sn},首項為a1,且2,an,Sn成等差數(shù)列,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2ancn=
bnan
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項為正數(shù)的數(shù)列滿足,且的等差中項.

(1)求數(shù)列的通項公式

(2)若,求使成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省學(xué)軍中學(xué)高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題

已知各項為正數(shù)的數(shù)列的前項和為,且滿足,
(1)求數(shù)列的通項公式  
(2)令,數(shù)列的前項和為,若對一切恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題

已知各項為正數(shù)的數(shù)列的前項和為,且滿足,

(1)求數(shù)列的通項公式  

 (2)令,數(shù)列的前項和為,若對一切恒成立,求的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案