是雙曲線的兩個(gè)焦點(diǎn), 在雙曲線上且,則的面積為 (      )

A.               B.             C.               D.

 

【答案】

A

【解析】

試題分析:根據(jù)已知條件可知,雙曲線方程

可知 ,那么可知

 

聯(lián)立方程組可知三角形的面積為1,選A.

考點(diǎn):本試題考查了雙曲線的方程以及性質(zhì)。

點(diǎn)評(píng):解決該試題的關(guān)鍵是利用定義和余弦定理,以及三角形的正弦面積公式來表示焦點(diǎn)三角形的面積,體現(xiàn)了多個(gè)知識(shí)點(diǎn)的綜合運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1  (a>0,b>0)
經(jīng)過點(diǎn)A(
3
5
5
4
5
5
)
,其漸近線方程為y=±2x.
(1)求雙曲線的方程;
(2)設(shè)F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),證明:AF1⊥AF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)斜率為
2
2
的直線l與雙曲線
x2
a2
-
y2
b2
=1
交于不同的兩點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是雙曲線的兩個(gè)焦點(diǎn),則該雙曲線的離心率為( 。
A、
42
B、
2
C、
43
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是雙曲線的兩個(gè)焦點(diǎn),雙曲線上存在點(diǎn)P,滿足∠F1PF2=60°,且|PF1|=2|PF2|,則該雙曲線的離心率為(  )
A、
2
B、
3
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),PQ是經(jīng)過F1且垂直于實(shí)軸的弦,若△PQF2是等腰直角三角形,則雙曲線的離心率為( 。
A、
2
B、
2
+1
C、
2
-1
D、
2
-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P為橢圓上的一個(gè)動(dòng)點(diǎn),過F2作∠F1PF2的外角平分線的垂線,垂足為M,則OM的長為定值.類比此命題,在雙曲線中也有命題q:已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0)
,F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),P為雙曲線上的一個(gè)動(dòng)點(diǎn),過F2作∠F1PF2
內(nèi)角平分線
內(nèi)角平分線
的垂線,垂足為M,則OM的長為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案