如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,當(dāng)||取最小值時(shí),求橢圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求·的最小值,并求此時(shí)圓T的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1、F2是橢圓=1(a>b>0)的左、右焦點(diǎn),點(diǎn)M在x軸上,且=,過點(diǎn)F2的直線與橢圓交于A、B兩點(diǎn),且AM⊥x軸,·=0.
(1)求橢圓的離心率;
(2)若△ABF1的周長(zhǎng)為,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點(diǎn)M、N在橢圓上,頂點(diǎn)P、Q在正方形的邊AB上,且A、M都在第一象限.
(1)若正方形ABCD的邊長(zhǎng)為4,且與y軸交于E、F兩點(diǎn),正方形MNPQ的邊長(zhǎng)為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且=λ(λ>0),定點(diǎn)A(-4,0).
(1)求證:當(dāng)λ=1時(shí),⊥;
(2)若當(dāng)λ=1時(shí),有·=,求橢圓C的方程..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否同時(shí)存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點(diǎn)在軸上的雙曲線漸近線方程為;
(2)點(diǎn)到雙曲線上動(dòng)點(diǎn)的距離最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,兩條相交線段、的四個(gè)端點(diǎn)都在橢圓上,其中,直線的方程為,直線的方程為.
(1)若,,求的值;
(2)探究:是否存在常數(shù),當(dāng)變化時(shí),恒有?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的離心率為,短軸長(zhǎng)是2.
(1)求a,b的值;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng)時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)試判斷圓與軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com