本小題滿分12分)設M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實根;②函數(shù)的導數(shù)滿足0<<1.

(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;

(2)判斷函數(shù)是否是集合M中的元素,并說明理由;

(3)設函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意,

證明:

 

【答案】

(1)令,則,故是單調(diào)遞減函數(shù),

所以,方程,即至多有一解,又由題設①知方程有實數(shù)根,所以,方程有且只有一個實數(shù)根;(2);(Ⅲ)不妨設,∵,∴單調(diào)遞增,∴,即

,則,故是單調(diào)遞減函數(shù),

,即,

,則有

【解析】

試題分析:令,則,故是單調(diào)遞減函數(shù),

所以,方程,即至多有一解,

又由題設①知方程有實數(shù)根,

所以,方程有且只有一個實數(shù)根…………………………………..4分

(2)易知,,滿足條件②;

,

,…………………………………..7分

在區(qū)間上連續(xù),所以上存在零點,

即方程有實數(shù)根,故滿足條件①,

綜上可知,……………………………………8分

(Ⅲ)不妨設,∵,∴單調(diào)遞增,

,即,

,則,故是單調(diào)遞減函數(shù),

,即,

,則有….……………..….12分

考點:本題考查了導數(shù)的運用

點評:近幾年新課標高考對于函數(shù)與導數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學運算的“力量”與數(shù)學思維的“技巧”完美結(jié)合.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)設數(shù)列滿足且對一切,有

(1)求數(shù)列的通項公式;

    (2)設 ,求的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆吉林省油田中學高三第一次模擬考試數(shù)學理卷 題型:解答題

(本小題滿分12分)
設a∈R,函數(shù)f(x)= e -x(ax2 + a + 1),其中e是自然對數(shù)的底數(shù);
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當 -1<a<0 時,求函數(shù)f(x)在 [ 1,2 ] 上的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三教學質(zhì)量檢測(四)文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)設平面向量=(m,1), =(2,n),其中m,n∈{1,2,3,4}.

(Ⅰ)請列出有序數(shù)組(m,n)的所有可能結(jié)果;

(Ⅱ)若“使得⊥()成立的(m,n)”為事件A,求事件A發(fā)生的概率。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期期末檢測理科數(shù)學 題型:解答題

(本小題滿分12分)

的內(nèi)角A、B、C所對的邊分別為a、b、c,且.

(1)當時,求a的值;

(2)當的面積為3時,求a+c的值。

 

查看答案和解析>>

同步練習冊答案