tan20°+tan40°+tan20°·tan40°的值是

[  ]
A.

B.

1

C.

D.

答案:C
解析:

  原式=tan(20°+40°)(1-tan20°tan40°)+tan20°tan40°

 。tan20°·tan40°+tan20°·tan40°=

  故選擇C.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

tan20°tan(-50°)-1
tan20°-tan50°
=( 。
A、-
3
B、
3
C、-
3
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個恒等式中猜想得到的一個結論為
當α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結果為
3
的是( 。
①tan25°+tan35°+<“m“:math dsi:zoomscale=150 dsi:_mathzoomed=1>3tan25°tan35°
3
tan25°tan35°

②(1+tan20°)(1+tan40°),
1+tan15°
1-tan15°

tan
π
6
1-tan2
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值:64
1
3
-(-
2
3
)0+
3125
+lg2+lg50+21+log23
;
(2)求值:
tan80°-tan20°+tan(-60°)
tan80°tan20°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1
   (2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結論,寫出你的推論
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1

查看答案和解析>>

同步練習冊答案