【錯(cuò)解分析】共線向量、向量的數(shù)乘、向量的數(shù)量積的定義及性質(zhì)和運(yùn)算法則等是向量一章中正確應(yīng)用向量知識(shí)解決有關(guān)問題的前提,在這里學(xué)生極易將向量的運(yùn)算與實(shí)數(shù)的運(yùn)算等同起來,如果認(rèn)為向量的數(shù)量積的運(yùn)算和實(shí)數(shù)一樣滿足交換律就會(huì)產(chǎn)生一些錯(cuò)誤的結(jié)論。
【正解】①正確。根據(jù)向量模的計(jì)算
判斷。
②錯(cuò)誤,向量的數(shù)量積的運(yùn)算不滿足交換律,這是因?yàn)楦鶕?jù)數(shù)量積和數(shù)乘的定義
表示和向量
共線的向量,同理
表示和向量
共線的向量,顯然向量
和向量
不一定是共線向量,故
不一定成立。
③錯(cuò)誤。應(yīng)為
④錯(cuò)誤。注意零向量和任意向量平行。非零向量的平行性才具有傳遞性。
⑤錯(cuò)誤。應(yīng)加條件“非零向量
”
⑥錯(cuò)誤。向量不滿足消去律。根據(jù)數(shù)量的幾何意義,只需向量
和向量
在向量
方向的投影相等即可,作圖易知滿足條件的向量有無數(shù)多個(gè)。
⑦錯(cuò)誤。注意平面向量的基本定理的前提有向量
是不共線的向量即一組基底。
⑧正確。條件表示以兩向量為鄰邊的平行四邊形的對(duì)角線相等,即四邊形為矩形。故
·
=0。
⑨錯(cuò)誤。只需兩向量垂直即可。
綜上真命題個(gè)數(shù)為2,故選B
【點(diǎn)評(píng)】在利用向量的有關(guān)概念及運(yùn)算律判斷或解題時(shí),一定要明確概念或定理成立的前提條件和依據(jù)向量的運(yùn)算律解答,要明確向量的運(yùn)算和實(shí)數(shù)的運(yùn)算的相同和不同之處。一般地已知a,b,с和實(shí)數(shù)λ,則向量的數(shù)量積滿足下列運(yùn)算律:①a·b=b·a (交換律)②(λa)·b=λ(a·b)=a·(λb) (數(shù)乘結(jié)合律)③(a+b)·с=a·с+b·с (分配律)