20.已知$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,則cosα-sinα的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

分析 利用平方法求出cosαsinα的值,根據(jù)$\frac{5π}{4}<α<\frac{3π}{2}$判斷cosα-sinα的值的正負(fù).在利用平方后開方可得答案.

解答 解:$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,
即(cosα+sinα)2=1+2cosαsinα=$\frac{5}{4}$,
∴cosαsinα=$\frac{1}{8}$.
∵$\frac{5π}{4}<α<\frac{3π}{2}$,
∴cosα-sinα=M>0.
則(cosα-sinα)2=M2,
∴1-2cosαsinα=M2
可得:M2=$\frac{3}{4}$,
∵M(jìn)>0,
∴M=$\frac{\sqrt{3}}{2}$,即cosα-sinα=$\frac{\sqrt{3}}{2}$.
故選B.

點(diǎn)評 本題考查了正余弦函數(shù)在象限的判斷和同角三角函數(shù)關(guān)系式的計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$|\overrightarrow a|=2$,$|\overrightarrow b|=4$,向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為120°,則向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影等于(  )
A.-3B.-2C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.袋中有形狀、大小都相同的6只球,其中1只白球,2只紅球,3只黃球,從中隨機(jī)先后摸出2只球,在已知摸出第一只球?yàn)榘浊虻那闆r下,第二只球?yàn)辄S球的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某程序框圖如圖,該程序運(yùn)行后輸出的k值是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,以π為最小正周期的偶函數(shù),且在(0,$\frac{π}{4}$)上單調(diào)遞增的函數(shù)是( 。
A.y=sinxB.y=sin2|x|C.y=-cos2xD.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)z=1+bi(b為正實(shí)數(shù)),且(z-2)2為純虛數(shù).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)若$ω=\frac{z}{2+i}$,求復(fù)數(shù)ω的模|ω|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.拋物線y2=2px(p>0)的準(zhǔn)線與圓x2+y2+2x=0相切,則p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知棱長為2,各面均為等邊三角形的四面體S-ABC,求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an},a2=2,an+an+1=3n,n∈N*,則a2+a4+a6+a8+a10+a12=57.

查看答案和解析>>

同步練習(xí)冊答案