已知函數(shù)f(x)=
m-2x+4
x-2
(m≠0)
,滿足條件f(a+x)+f(a-x)=2b(x≠2),則a+b的值為
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先將函數(shù)f(x)化為f(x)=
m
x-2
-2,運(yùn)用函數(shù)y=
m
x
的圖象平移得到y(tǒng)=f(x)的圖象,從而得到函數(shù)f(x)的對稱中心為(2,-2),由條件f(a+x)+f(a-x)=2b知函數(shù)的對稱中心為(a,b),即a=2,b=-2.
解答: 解:函數(shù)f(x)=
m-2x+4
x-2
(m≠0)
可化為:f(x)=
m
x-2
-2,
函數(shù)y=f(x)的圖象可看作由函數(shù)y=
m
x
的圖象先向右平移2個(gè)單位,
再向下平移2個(gè)單位得到,
∵y=
m
x
的圖象關(guān)于點(diǎn)(0,0)對稱,
∴y=f(x)的圖象關(guān)于點(diǎn)(2,-2)對稱,
∵f(x)滿足f(a+x)+f(a-x)=2b(x≠2),
∴f(x)的圖象關(guān)于點(diǎn)(a,b)對稱,
∴a=2,b=-2,
∴a+b=0,
故答案為:0.
點(diǎn)評:本題主要考查函數(shù)的對稱性,以及圖象的平移變換,注意結(jié)論:f(x)滿足f(a+x)+f(a-x)=2b,則函數(shù)關(guān)于點(diǎn)(a,b)對稱;f(x)滿足f(a+x)=f(a-x)=2b,則函數(shù)關(guān)于直線x=a對稱的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,向量
OZ
對應(yīng)的復(fù)數(shù)為z,則z+
4
z
對應(yīng)的復(fù)數(shù)是(  )
A、1+3iB、-3+i
C、3-iD、3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三學(xué)生數(shù)學(xué)調(diào)研測試后,隨機(jī)地抽取部分學(xué)生進(jìn)行成績統(tǒng)計(jì),如圖所示是抽取出惡報(bào)的所有學(xué)生的測試成績統(tǒng)計(jì)結(jié)果的頻率分布直方圖.

(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)該校高三學(xué)生數(shù)學(xué)調(diào)研測試的平均分;
(2)用分層抽樣的方法在分?jǐn)?shù)段為(110,130]的學(xué)生中抽取一個(gè)容量為6的樣本,則(110,130],(120,130]的學(xué)生分別抽取多少人?
(3)將(2)中抽取的樣本看成一個(gè)總體,從中任取2人,求恰好有1人在分?jǐn)?shù)段(110,120]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)都為正數(shù),且對任意n∈N*,a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列.
(1)若a2=1,a5=3,求a1的值;
(2)設(shè)a1<a2,求證:對任意n∈N*,且n≥2,都有
an+1
an
a2
a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正數(shù)數(shù)列{an}中,Sn為an的前n項(xiàng)和,若點(diǎn)(an,Sn)在函數(shù)y=
c2-x
c-1
的圖象上,其中c為正常數(shù),且c≠1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)c=
1
2
的時(shí)候,在數(shù)列{an}的兩項(xiàng)之間都按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列{bn}:an和an+1兩項(xiàng)之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)構(gòu)成等差數(shù)列,求b2014的值;
(3)設(shè)數(shù)列{cn}滿足cn=
n,n=2k-1
2an,n=2k
,k∈N*,當(dāng)c=
3
3
時(shí)候,在數(shù)列{cn}中,是否存在連續(xù)的三項(xiàng)cr,cr+1,cr+2,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
3
x3+
1
2
f′(1)x2-f′(2)x+5,則曲線y=f(x)在點(diǎn)(0,f(0))處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=cosθ(sinθ+cosθ)
y=sinθ(sinθ+cosθ)
(θ為參數(shù))所表示的曲線為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1+tanx)cos2x的定義域?yàn)椋?,
π
2
),則函數(shù)f(x)的值域?yàn)?div id="41yrr9i" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在球O的內(nèi)接四面體ABCD中,DA⊥DC,DB⊥DC,∠ADB=120°,且DC=2
2
,DA=DB=1,則球O的表面積是
 

查看答案和解析>>

同步練習(xí)冊答案