【題目】科技創(chuàng)新在經(jīng)濟(jì)發(fā)展中的作用日益凸顯.某科技公司為實(shí)現(xiàn)9000萬元的投資收益目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)研發(fā)人員的獎(jiǎng)勵(lì)方案:當(dāng)投資收益達(dá)到3000萬元時(shí),按投資收益進(jìn)行獎(jiǎng)勵(lì),要求獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎(jiǎng)金總數(shù)不低于100萬元,且獎(jiǎng)金總數(shù)不超過投資收益的20%.
(1)現(xiàn)有三個(gè)獎(jiǎng)勵(lì)函數(shù)模型:①,②,③,.試分析這三個(gè)函數(shù)模型是否符合公司要求?
(2)根據(jù)(1)中符合公司要求的函數(shù)模型,要使獎(jiǎng)金額達(dá)到350萬元,公司的投資收益至少要達(dá)到多少萬元?
【答案】(1)見解析;(2)投資收益至少要達(dá)到萬元
【解析】
(1)根據(jù)公司要求知函數(shù)為增函數(shù),同時(shí)應(yīng)滿足且,一一驗(yàn)證所給的函數(shù)模型即可;
(2)由,解不等式即可.
(1)由題意符合公司要求的函數(shù)在為增函數(shù),
在且對(duì),恒有且.
①對(duì)于函數(shù),當(dāng)時(shí),,不符合要求;
②對(duì)于函數(shù)為減函數(shù),不符合要求;
③對(duì)于函數(shù)在,
顯然為增函數(shù),且當(dāng)時(shí), ;
又因?yàn)?/span>;
而,所以當(dāng)時(shí),.
所以恒成立;
因此,為滿足條件的函數(shù)模型.
(2)由得:,所以,
所以公司的投資收益至少要達(dá)到萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)擲3枚硬幣,觀察落地后這3枚硬幣出現(xiàn)正面還是反面.(與先后順序有關(guān))
(1)寫出這個(gè)試驗(yàn)的樣本空間及樣本點(diǎn)的個(gè)數(shù);
(2)寫出事件“恰有兩枚正面向上”的集合表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備,某高中每年招收學(xué)生1000人,開設(shè)大學(xué)先修課程已有兩年,共有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有50人,這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:
(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性體驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.
①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過的概率;
②某班有4名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),設(shè)獲得某高校自主招生通過的人數(shù)為,求的分布列,并求今年全校參加大學(xué)先修課程的學(xué)生獲得大學(xué)自主招生通過的人數(shù).
參考數(shù)據(jù):
參考公式: ,期中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展一次“五四”知識(shí)競賽活動(dòng),共有三個(gè)問題,其中第1、2題滿分都是15分,第3題滿分是20分.每個(gè)問題或者得滿分,或者得0分.活動(dòng)結(jié)果顯示,每個(gè)參賽選手至少答對(duì)一道題,有6名選手只答對(duì)其中一道題,有12名選手只答對(duì)其中兩道題.答對(duì)第1題的人數(shù)與答對(duì)第2題的人數(shù)之和為26,答對(duì)第1的人數(shù)與答對(duì)第3題的人數(shù)之和為24,答對(duì)第2題的人數(shù)與答對(duì)第3題的人數(shù)之和為22.則參賽選手中三道題全答對(duì)的人數(shù)是____;所有參賽選手的平均分是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過點(diǎn)的直線、與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),且.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且和滿足: .
(1)求的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和;
(3)在(2)的條件下,對(duì)任意,都成立,求整數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com