已知函數(shù)f(x)=
x2e-ax   x<0
a-x2
x+1
-1    x≥0
在R上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分當(dāng)x<0、當(dāng)x>0兩種情況,分別考查導(dǎo)數(shù)的符號,求得a的范圍,綜合可得結(jié)論.
解答: 解:當(dāng)x<0時,f′(x)=x(2-ax)e-ax,
當(dāng)x>0時,f′(x)=
-2x(x+1)-(a-x2)
(x+1)2
=
-x2-2x-a
(x+1)2

若f(x)在R上為單調(diào)遞增函數(shù),則當(dāng)x>0時,f′(x)=
-x2-2x-a
(x+1)2
>0
,顯然a∈∅.
若f(x)在R上為單調(diào)遞減函數(shù),則
當(dāng)x>0時,f′(x)=
-x2-2x-a
(x+1)2
<0
,即a>-x2-2x,所以a≥0.
當(dāng)x<0時,f′(x)=x(2-ax)e-ax<0,即ax-2<0,所以a≥0.
當(dāng)x=0時,0≥a-1,即a≤1.
綜上可得0≤a≤1.
點(diǎn)評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的單調(diào)性的定義、性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種商品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
求y關(guān)于x的回歸直線方程,并預(yù)測廣告費(fèi)支出900萬元的銷售額大約是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F.
(1)求證:AE•BF=CE•EF;
(2)若DF•DB=5,OE=2,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R+上的增函數(shù),并且對任意的x>0,y>0,f(xy)=f(x)+f(y)總成立.
(1)求證:x>1時,f(x)>0;
(2)如果f(3)=1,解不等式f(x)>f(x-1)+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)n和為Sn,a1=1,Sn與-3Sn+1的等差中項(xiàng)是-
2
3
(n∈N+
(1)證明數(shù)列{Sn-
2
3
}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若對任意正整數(shù)n,不等式k≥Sn恒成立,求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
e1
,
e2
的夾角為600,向量
a
=
e1
+
e2
,
b
=
e2
-2
e1
.求:
(1)
a
b
;
(2)求
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)的和為Sn,且滿足a1=1,Sn+1=4an+2
(1)若bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
(2)求證數(shù)列{
an
2n
}是等差數(shù)列;
(3)若cn=
2n
an(3n+2)
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為零的等差數(shù)列,a1=2,且a3是a1和a9的等比中項(xiàng),求:
(1)數(shù)列{an}的通項(xiàng)公式;
(2)2 a2+2 a4+2 a6+…+2 a100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)之和為Sn,且S4=48,a2+a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(17-an)2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案