【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,若這200名學(xué)生中每周的自習(xí)時(shí)間不超過(guò)m小時(shí)的人數(shù)為164,則m的值約為(
A.26.25
B.26.5
C.26.75
D.27

【答案】B
【解析】解:因?yàn)?00名學(xué)生中每周的自習(xí)時(shí)間不超過(guò)m小時(shí)的人數(shù)為164,

則自習(xí)時(shí)間不超過(guò)m小時(shí)的頻率為: =0.82,

第一組的頻率為0.05,第二組的頻率為0.25,第三組的頻率為0.4,第四組的頻率為0.2,第五組的頻率為0.1,

其中前三組的頻率之和0.05+0.25+0.4=0.7,其中前四組的頻率之和0.7+0.2=0.9,

則0.82落在第四組,m=25+ ×2.5=26.5

故選:B.

【考點(diǎn)精析】利用頻率分布直方圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三棱柱ABC﹣A1B1C1底邊長(zhǎng)為2,E,F(xiàn)分別為BB1 , AB的中點(diǎn). (I)已知M為線段B1A1上的點(diǎn),且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且bcosC=(3a﹣c)cosB.D為AC邊的中點(diǎn),且BD=1,則△ABD面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx+x2﹣2ax(a>0). (I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點(diǎn)B到平面ECD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點(diǎn),過(guò)A1 , Q,D三點(diǎn)的平面記為α.
(1)證明:平面α與平面A1B1C1D1的交線平行于直線CD;
(2)若AA1=3,BC=CD= ,∠BCD=120°,求平面α與底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)e2x+x+1(其中e為自然對(duì)數(shù)的e底數(shù)).
(1)若a=0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)x∈(0,+∞),f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足 ,若 ,則n的最小值為(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案