已知直三棱柱的三視圖如圖所示,且是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問(wèn)線(xiàn)段上是否存在點(diǎn),使與成 角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.
(Ⅰ)詳見(jiàn)解析;(Ⅱ)二面角的余弦值為;(Ⅲ)當(dāng)點(diǎn)為線(xiàn)段中點(diǎn)時(shí),與成角.
【解析】
試題分析:(Ⅰ)為了證明∥平面,需要在平面內(nèi)找一條與平行的直線(xiàn),而要找這條直線(xiàn)一般通過(guò)作過(guò)且與平面相交的平面來(lái)找.在本題中聯(lián)系到為中點(diǎn),故連結(jié),這樣便得一平面,接下來(lái)只需證與交線(xiàn)平行即可.對(duì)(Ⅱ)(Ⅲ)兩個(gè)小題,由于是直三棱柱,且,故兩兩垂直,所以可以以為坐標(biāo)軸建立空間直角坐標(biāo)系來(lái)解決.
試題解析:(Ⅰ)證明:根據(jù)三視圖知:三棱柱是直三棱柱,,連結(jié),交于點(diǎn),連結(jié).由 是直三棱柱,得 四邊形為矩形,為的中點(diǎn).又為中點(diǎn),所以為中位線(xiàn),所以 ∥, 因?yàn)?平面,平面, 所以 ∥平面. 4分
(Ⅱ)解:由是直三棱柱,且,故兩兩垂直.
如圖建立空間直角坐標(biāo)系.
,則.
所以 ,
設(shè)平面的法向量為,則有
所以
取,得. 6分
易知平面的法向量為. 7分
由二面角是銳角,得 . 8分
所以二面角的余弦值為.
(Ⅲ)解:假設(shè)存在滿(mǎn)足條件的點(diǎn).
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030704371619332646/SYS201403070438220215456860_DA.files/image003.png">在線(xiàn)段上,,,故可設(shè),其中.
所以 ,. 9分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030704371619332646/SYS201403070438220215456860_DA.files/image005.png">與成角,所以. 10分
即,解得,舍去. 11分
所以當(dāng)點(diǎn)為線(xiàn)段中點(diǎn)時(shí),與成角. 12分
考點(diǎn):1、空間直線(xiàn)與平面平行;2、二面角;3、空間異面直線(xiàn)所成的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三第十次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問(wèn)線(xiàn)段上是否存在點(diǎn),使與成 角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省八校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,且是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問(wèn)線(xiàn)段上是否存在點(diǎn),使與成 角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com