已知直三棱柱的三視圖如圖所示,且是的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使與成 角?若存在,確定點位置,若不存在,說明理由.
(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)當點為線段中點時,與成角.
【解析】
試題分析:(Ⅰ)為了證明∥平面,需要在平面內找一條與平行的直線,而要找這條直線一般通過作過且與平面相交的平面來找.在本題中聯系到為中點,故連結,這樣便得一平面,接下來只需證與交線平行即可.對(Ⅱ)(Ⅲ)兩個小題,由于是直三棱柱,且,故兩兩垂直,所以可以以為坐標軸建立空間直角坐標系來解決.
試題解析:(Ⅰ)證明:根據三視圖知:三棱柱是直三棱柱,,連結,交于點,連結.由 是直三棱柱,得 四邊形為矩形,為的中點.又為中點,所以為中位線,所以 ∥, 因為 平面,平面, 所以 ∥平面. 4分
(Ⅱ)解:由是直三棱柱,且,故兩兩垂直.
如圖建立空間直角坐標系.
,則.
所以 ,
設平面的法向量為,則有
所以
取,得. 6分
易知平面的法向量為. 7分
由二面角是銳角,得 . 8分
所以二面角的余弦值為.
(Ⅲ)解:假設存在滿足條件的點.
因為在線段上,,,故可設,其中.
所以 ,. 9分
因為與成角,所以. 10分
即,解得,舍去. 11分
所以當點為線段中點時,與成角. 12分
考點:1、空間直線與平面平行;2、二面角;3、空間異面直線所成的角.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2012-2013學年河北省高三第十次模擬考試理科數學試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,是的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使與成 角?若存在,確定點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年湖北省八校高三第二次聯考理科數學試卷(解析版) 題型:解答題
已知直三棱柱的三視圖如圖所示,且是的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使與成 角?若存在,確定點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2010年上海市普陀區(qū)高考數學一模試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com