若實(shí)數(shù)x,y滿(mǎn)足不等式組數(shù)學(xué)公式,則z=2x+y的最小值為


  1. A.
    -2
  2. B.
    1
  3. C.
    4
  4. D.
    2
A
分析:根據(jù)已知的約束條件畫(huà)出滿(mǎn)足約束條件的可行域,再由目標(biāo)函數(shù)z=2x+y可得y=-2x+z,此時(shí)Z為直線(xiàn)在y軸上的截距,根據(jù)條件可求Z的最值
解答:解:作出不等式組所表示的平面區(qū)域,如圖所示得陰影部分的△ABC
由z=2x+y可得y=-2x+z,則Z為直線(xiàn)在y軸上的截距
把直線(xiàn)L:y=-2x向上平移到C時(shí),Z最大,此時(shí)由可得C(2,0)
此時(shí)Z=4
把L:y=-2x向下平移到B時(shí),Z最小,此時(shí)由可得B(-1,0)
此時(shí)Z=-2
故選A
點(diǎn)評(píng):用圖解法解決線(xiàn)性規(guī)劃問(wèn)題時(shí),分析題目的已知條件,找出目標(biāo)函數(shù)中的Z的意義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿(mǎn)足
f(x1)-f(x2)
x1-x2
<0
,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則當(dāng) 1≤x≤4時(shí),
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿(mǎn)足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿(mǎn)足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿(mǎn)足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿(mǎn)足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案