設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(
12
)
的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且對(duì)任意的正整數(shù)n,均滿足f(Sn)=f(an)+f(an+1)-1,求數(shù)列{an}的通項(xiàng)公式.
分析:(1)利用賦值法求值,再利用單調(diào)性的定義證明函數(shù)的單調(diào)性;
(2)先得出和與通項(xiàng)的關(guān)系,再寫一式,兩式相減,即可求得數(shù)列的通項(xiàng).
解答:解:(1)令x=y=1,得f(1)=0;令x=2,y=
1
2
,得f(
1
2
)=-1
(3分)
y=f(x)在(0,+∞)上單調(diào)遞增.下面證明:
任取0<x1<x2,則
x2
x1
>1
,∵當(dāng)x>1時(shí),f(x)>0,∴f(
x2
x1
)>0

在已知式中令x=x1,y=
x2
x1
,得f(x2)-f(x1)=f(
x2
x1
)>0
,即證.(6分)
(2)當(dāng)n≥2時(shí),∵f(Sn)=f(an)+f(an+1)-1
∴f(Sn)+1=f(an)+f(an+1),即f(2Sn)=f(an(an+1))(8分)
∵y=f(x)在(0,+∞)上單調(diào)遞增,
∴2Sn=an(an+1)∴2Sn+1=an+1(an+1+1)
兩式相減得:2an+1=
a
2
n+1
+an+1-
a
2
n
-an
,
即(an+1+an)(an+1-an-1)=0
∵an>0,∴an+1-an=1(11分)
∴數(shù)列{an}是首項(xiàng)為3,公差為1的等差數(shù)列
∴an=n+2.(12分)
點(diǎn)評(píng):本題考查抽象函數(shù)的單調(diào)性,考查數(shù)列與函數(shù)的綜合,考查單調(diào)性的證明,考查數(shù)列通項(xiàng)的求解,正確理解題意是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當(dāng)x>0時(shí),f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)槿wR,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y)成立,數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求證:y=f(x)是R上的減函數(shù);          
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
對(duì)一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽+,若對(duì)于給定的正數(shù)k,定義函數(shù):fk(x)=
k,f(x)≤k
f(x),f(x)>k
,則當(dāng)函數(shù)f(x)=
1
x
,k=1
時(shí),函數(shù)fk(x)的圖象與直線x=
1
4
,x=2,y=0圍成的圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•閔行區(qū)一模)(文)設(shè)函數(shù)y=f(x)的反函數(shù)是y=f-1(x),且函數(shù)y=f(x)過(guò)點(diǎn)P(2,-1),則f-1(-1)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•南匯區(qū)二模)設(shè)函數(shù)y=f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí)f(x)<0且f(3)=-4.
(1)求證:y=f(x)為奇函數(shù);
(2)在區(qū)間[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案