【題目】函數(shù)f(x)對任意實數(shù)x,y滿足f(x)+f(y)=f(x+y),則f(﹣1)+f(0)+f(1)=

【答案】0
【解析】解:∵函數(shù)f(x)對任意實數(shù)x,y滿足f(x)+f(y)=f(x+y),

f(﹣1)+f(1)=f(﹣1+1)=f(0),

f(0)+f(0)=f(0),

∴f(0)=0,

∴f(﹣1)+f(0)+f(1)=2f(0)=0.

所以答案是:0.

【考點精析】解答此題的關鍵在于理解函數(shù)的值的相關知識,掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)滿足f(x+3)=2x﹣1,則函數(shù)f(x)的解析式:f(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點P(-1,2,3)關于xOz平面對稱的點的坐標是 ( )
A.(1,2,3)
B.(-1,-2,3)
C.(-1,2,-3)
D.(1,-2,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={0,1},則集合A的子集共有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場將彩電的售價先按進價提高40%,然后“八折優(yōu)惠”,結果每臺彩電利潤為360元,那么彩電的進價是( )
A.2000元
B.2500元
C.3000元
D.3500元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于命題“正三角形的內切圓切于三邊的中點”,可類比猜想出正四面體的內切球切于四面體( )
A.各正三角形內的點
B.各正三角形的中心
C.各正三角形某高線上的點
D.各正三角形各邊的中點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合A={x|﹣1≤x≤2},集合B={x|x≤a}.若A∩B=,則實數(shù)a的取值范圍是( 。
A.{a|a<2}
B.{a|a≥﹣1}
C.{a|﹣1≤a<2}
D.{a|a<﹣1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題:“若ab=0,則a=0或b=0”的逆否命題是 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于棱柱的說法中,錯誤的是( )
A.三棱柱的底面為三角形
B.一個棱柱至少有五個面
C.若棱柱的底面邊長相等,則它的各個側面全等
D.五棱柱有5條側棱、5個側面,側面為平行四邊形

查看答案和解析>>

同步練習冊答案