【題目】已知中心為原點O,焦點在x軸上的橢圓C的離心率為,且橢圓C的長軸是圓的一條直徑.

1)求橢圓C的方程;

2)若不過原點的直線l與橢圓C交于AB兩點,與圓M交于P、Q兩點,且直線OA,AB,OB的斜率成等比數(shù)列,求的取值范圍.

【答案】12

【解析】

1)根據(jù)橢圓的離心率公式,列方程,再由橢圓長軸是圓的直徑,判斷,即可求解;

2)根據(jù)題意,設直線方程,將直線方程與橢圓方程聯(lián)立,消元得到關于的一元二次方程,使判別式,列出,由直線OA,AB,OB的斜率成等比數(shù)列,列出方程,再代入,化簡求解參數(shù)值,再根據(jù)直線與圓相交利用幾何法求解弦長,并根據(jù)判別式,求解參數(shù)范圍,代入,即可求取值范圍.

1)設橢圓方程為,

由已知,得,

由橢圓C的長軸是圓的一條直徑,得,則.

得橢圓方程為.

2)設,

聯(lián)立方程,得,

,

,則,(*

因為直線OAAB、OB的斜率成等比數(shù)列,得

,將(*)式代入,得

,因為,則,得,

OAOB的斜率存在,及,得

,得,且,

設原點O到直線l的距離為d,則

,因為,且

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】響應“文化強國建設”號召,某市把社區(qū)圖書閱覽室建設增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學的有64人,不喜歡的有56人;女士喜歡閱讀古典文學的有36人,不喜歡的有44人.

(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?

(2)為引導市民積極參與閱讀,有關部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學.現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數(shù),求的分布列及數(shù)學期望

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體,點,,分別是棱,,的中點,動點在線段上運動.

1)證明:平面;

2)求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為,上頂點為.已知橢圓的離心率為,.

)求橢圓的標準方程;

)設直線與橢圓交于,兩點,且點在第二象限.延長線交于點,若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是由非負整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項的最大值記為,第項之后各項的最小值記為,記

(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;

(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;

(3)若對任意恒成立,證明:數(shù)列的通項公式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱的所有棱長相等,的中點.

(1)求證:平面

2)當的中點時,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】談祥柏先生是我國著名的數(shù)學科普作家,他寫的《數(shù)學百草園》、《好玩的數(shù)學》、《故事中的數(shù)學》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數(shù)學》中談老的一篇文章《五分鐘內(nèi)挑出埃及分數(shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(shù)(稱為埃及分數(shù)).如用兩個埃及分數(shù)的和表示.100個埃及分數(shù)中挑出不同的3個,使得它們的和為1,這三個分數(shù)是________.(按照從大到小的順序排列)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)代足球運動是世上開展得最廣泛、影響最大的運動項目,有人稱它為世界第一運動.早在2000多年前的春秋戰(zhàn)國時代,就有了一種球類游戲蹴鞠,后來經(jīng)過阿拉伯人傳到歐洲,發(fā)展成現(xiàn)代足球.18631026日,英國人在倫敦成立了世界上第一個足球運動組織——英國足球協(xié)會,并統(tǒng)一了足球規(guī)則.人們稱這一天是現(xiàn)代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱為足球的面,任何相鄰兩個面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個,則該足球表面中的正五邊形的面為______個,該足球表面的棱為______條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知傾斜角為的直線過點,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.曲線的極坐標方程為,直線與曲線分別交于、兩點.

1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

2)若,求直線的斜率

查看答案和解析>>

同步練習冊答案