5.《九章算術(shù)》中有一個(gè)“兩鼠穿墻”問題:今有垣(墻,讀音)厚五尺,兩鼠對(duì)穿,大鼠日穿(第一天挖)一尺,小鼠也日穿一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天減半).問何日(第幾天)兩鼠相逢( 。
A.1B.2C.3D.4

分析 利用等比數(shù)列的求和公式即可得出.

解答 解:由題意可知:大老鼠每天打洞的距離是以1為首項(xiàng),以2為公比的等比數(shù)列,
前n天打洞之和為$\frac{{2}^{n}-1}{2-1}$=2n-1,
同理,小老鼠每天打洞的距離$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$,
∴2n-1+2-$\frac{1}{{2}^{n-1}}$=5,
即2n-$\frac{1}{{2}^{n-1}}$=4,
解得n∈(2,3),取n=3
即兩鼠在第3天相逢.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,則其前n項(xiàng)和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義在R上的函數(shù)f(x)當(dāng)且僅當(dāng)存在有限個(gè)非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù),則下列函數(shù)中為類偶函數(shù)的是(  )
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=$\frac{\sqrt{3}}{4}$(a2+b2-c2).
(1)求角C的弧度數(shù);
(2)若c=$\sqrt{3}$,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
 $\overline{x}$ $\overrightarrow{y}$ $\overline{w}$ $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8 289.8 1.6 1469 108.8
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與$y=c+d\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)x為何值時(shí),年利潤最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn)其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平行四邊形ABCD中,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,對(duì)角線AC交BD于點(diǎn)O,AB上一點(diǎn)E滿足$\overrightarrow{OE}•\overrightarrow{BD}=0$,F(xiàn)為AC上任意一點(diǎn).
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{BD}$值;
(Ⅱ)若$|\overrightarrow{BD}|=\sqrt{10}$,求$\overrightarrow{AF}•\overrightarrow{EF}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a>0,函數(shù)f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函數(shù)f(x)的圖象在點(diǎn)x=1處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的極值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.二項(xiàng)式(x2+$\frac{2}{\sqrt{x}}$)5展開式中的常數(shù)項(xiàng)是80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-sin2x+msinx+2,當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí)函數(shù)有最大值為$\frac{3}{2}$,求此時(shí)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案