分析 (1)線面平行轉(zhuǎn)化為證明線線平面,連結(jié)AC交BD于O連結(jié)DO,OE,E,G,H分別為BC,C1D1,AA1的中點(diǎn),可證四邊形OEGD1為平行四邊形,可得EG∥平面BDD1B1
(2)找到異面直線的平面角,延長(zhǎng)DB于M,連結(jié)B1M,HM,∠HB1M為所求角,利用余弦定理可得角的大。
解答 解:(1)證明:ABCD-A1B1C1D1是正方體,E,G,H分別為BC,C1D1,AA1的中點(diǎn),
連結(jié)AC交BD于O連結(jié)DO,OE,
∵$OE\underline{\underline∥}\frac{1}{2}CD,OD\underline{\underline∥}{D_1}G$
∴四邊形OEGD1為平行四邊形
∴EG∥OD1,又EG?面BDD1B1,OD1?面BDD1B1,
∴EG∥平面BDD1B1.
(2)延長(zhǎng)DB于M,使$BM=\frac{1}{2}BD$,
連結(jié)B1M,HM,∠HB1M為所求角.
設(shè)正方體邊長(zhǎng)為1,則${B_1}M=\frac{{\sqrt{6}}}{2},{B_1}H=\frac{{\sqrt{5}}}{2},AM=\frac{{\sqrt{10}}}{2},HM=\frac{{\sqrt{11}}}{2}$,
∴cos∠HB1M=0,
∴B1H與EG所成的角為90°.
點(diǎn)評(píng) 本題考查了線面平行的證明,只需要證明這條直線平行于平面內(nèi)的一條直線即可.異面直線的角,要找到它們?cè)谕粋(gè)平面的角,通過(guò)平移,中位線,延長(zhǎng)相交等求解.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分接近$\sqrt{5}$的所有實(shí)數(shù) | B. | 所有的正方形 | ||
C. | 著名的數(shù)學(xué)家 | D. | 1,2,3,3,4,4,4,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com