15.函數(shù)f(x)=$\frac{x}{{e}^{x}}$(e為自然對(duì)數(shù)的底數(shù))的最大值是$\frac{1}{e}$.

分析 求出函數(shù)的導(dǎo)數(shù),求出單調(diào)區(qū)間,可得極大值,也為最大值,計(jì)算即可得到所求值.

解答 解:函數(shù)f(x)=$\frac{x}{{e}^{x}}$的導(dǎo)數(shù)為f′(x)=$\frac{{e}^{x}-x{e}^{x}}{({e}^{x})^{2}}$=$\frac{1-x}{{e}^{x}}$,
當(dāng)x>1時(shí),f′(x)<0,f(x)遞減;
當(dāng)x<1時(shí),f′(x)>0,f(x)遞增.
即有x=1處取得極大值,且為最大值$\frac{1}{e}$.
故答案為:$\frac{1}{e}$.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用導(dǎo)數(shù),判斷單調(diào)性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知loga2=m,loga3=n,則a2m+n=(  )
A.6B.7C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,且4an+2an+1-9anan+1=1(n∈N*
(1)求a2,a3,a4
(2)由此猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.未來(lái)制造業(yè)對(duì)零件的精度要求越來(lái)越高.3D打印通常是采用數(shù)字技術(shù)材料打印機(jī)來(lái)實(shí)現(xiàn)的,常在模具制造、工業(yè)設(shè)計(jì)等領(lǐng)域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術(shù)打印而成的零部件.該技術(shù)應(yīng)用十分廣泛,可以預(yù)計(jì)在未來(lái)會(huì)有廣闊的發(fā)展空間.某制造企業(yè)向A高校3D打印實(shí)驗(yàn)團(tuán)隊(duì)租用一臺(tái)3D打印設(shè)備,用于打印一批對(duì)內(nèi)徑有較高精度要求的零件.該團(tuán)隊(duì)在實(shí)驗(yàn)室打印出了一批這樣的零件,從中隨機(jī)抽取10件零件,度量其內(nèi)徑的莖葉圖如圖所示(單位:μm).
(I)計(jì)算平均值μ與標(biāo)準(zhǔn)差σ
(Ⅱ)假設(shè)這臺(tái)3D打印設(shè)備打印出品的零件內(nèi)徑Z服從正態(tài)分布N(μ,σ);該團(tuán)隊(duì)到工廠安裝調(diào)試后,試打了5個(gè)零件.度量其內(nèi)徑分別為(單位:μm):86、95、103、109、118,試問(wèn)此打印設(shè)備是否需要進(jìn)一步調(diào)試,為什么?
參考數(shù)據(jù):P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.要建一間地面為25m2,墻高為3m的長(zhǎng)方體形的簡(jiǎn)易工棚.已知工棚屋頂每1m2的造價(jià)為500元,墻壁每1m2的造價(jià)為400元.問(wèn)怎樣設(shè)計(jì)地面的長(zhǎng)與寬,能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若復(fù)數(shù)z滿足zi=-1-i,則在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.拋物線C:y2=4x上到直線l:y=x距離為$\frac{\sqrt{2}}{2}$的點(diǎn)的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an},{bn}(bn≠0,n∈N*)滿足bn+1=$\frac{{a}_{n+1}•_{n}}{{a}_{n}+2_{n}}$,且a1=b1=1.
(1)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的通項(xiàng)公式;
(2)若數(shù)列{bn}為各項(xiàng)均為正數(shù)的等比數(shù)列,且b32=9b2b6,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={1,2,3},平面內(nèi)以(x,y)為坐標(biāo)的點(diǎn)集合B={(x,y)|x∈A,y∈A,x+y∈A},則B的子集個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案